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1 Introduction
Market is imperfectly competitive since the number of firms is small, the goods
are differentiated or there is some kind of economies of scale. In real world, we
see many imperfectly competitive industries in which the firms compete fiercely
both domestically and internationally. In such a imperfectly competitive inter-
national market, governments may have incentives to introduce trade policies
like tariff, export subsidy and tax. If governments can affect, or more precisely,
strategically alter market structure by introducing polices, then it is very im-
portant to examine how behavior of the firms would be affected or what the
impact it would have on the market. To address these issues, a lot of efforts
have been devoted since the 1980s. Brander and Spencer (1985) demonstrate
that an increase in a domestic export subsidy raises the domestic profit when
the firms compete in a Cournot way. Eaton and Grossman (1986) show that an
export tax can be optimal when the firms compete in a Bertrand way. It is now
well-known that the source of this sharpe difference comes from the difference in
the assumption on the firms’ strategic behavior (that is, the goods are strategic
substitutes or strategic complements, the definitions of which are due to Bulow
et al. (1985)). It is also well-known that this behavioral difference relates to
the curvature and the elasticity of the demand function. Recently, constructing
a simplified three-country model with two firms and two governments, Bandy-
opadhyay (1997) shows the following clear-cut results on the trade policy when
demand is hyperbolic:

(1) When the production costs of the firms are identical, then a subsidy is
optimal if demand is elastic while a tax is optimal if demand is inelastic.

(2) When the production costs are different, then the lower-cost firm enjoys
the higher subsidy and such a trade policy is locally stable in policy space
if demand is elastic while the higher-cost firm enjoys the higher subsidy
and such a policy is locally unstable if demand is inelastic.

We move one step forward to consider local as well as global dynamics of
trade policy and corresponding outputs in the three-country model. This study
complements the results of Bandyopadhyay from a dynamic point of view. It
is also an extension of the work of Matsumoto and Serizawa (2007) who focus
mainly on the comparative static analysis of a similar three-country model. The
price function is assumed to be hyperbolic so that the dynamic model of outputs
to be considered in this paper resembles nonlinear dynamic duopoly models,
which has been extensively studies during the last twenty years. Comprehensive
summary of the earlier works has been presented in Puu and Sushko (2002) and
Puu (2003). More recent developments on this filed are given in Bischi et al.
(2009). The third aims of this study is to apply the theoretical results obtained
there to the dynamic analysis in the framework of international economics.
This paper is organized as follows. Section 2 presents a variant of the three-

country model in which both governments take active roles. Section 3 considers
policy dynamics and the corresponding output dynamics when the demand is
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elastic. Section 4 examines the same dynamic issue when the demand is inelastic.
Section 5 gives concluding remarks.

2 The Model
The model presented below is a variant of the three-country model. Two coun-
tries are called Home and Foreign and governed by the Home government
and the Foreign government (henceforth referred to as H-government and F -
government). There is one firm in each country, the firm in the Home country
is named firm 1 and the one in the Foreign country firm 2. They produce indif-
ferent outputs, x and y, with constant marginal costs, c1 and c2, respectively,
and export all of the outputs they produce to a third country. Competition in
the third country is modeled through a two-stage game. At the first stage, the
governments hosting their firms choose subsidy rates, si for i = 1, 2, so as to
maximize their welfare, taking the optimal behavior of the firms as given. At
the second stage, the firms employ the quantity competition in a Cournot way
and choose outputs so as to maximize their profits, taking their governments’
trade policies as given. Optimal subsides and optimal outputs are backwardly
determined.
This section is divided into four parts. We first solve the profit maximization

problems of the firms in Section 2.1 and then in Section 2.2 we consider stability
of the output equilibrium, taking the trade policies of the governments as given.
We solve the welfare maximization problems of the governments in Section 2.3
and finally determine the optimal trade policy in Section 2.4.

2.1 Profit Maximization

Let the inverse demand function be hyperbolic,

P =
1

Qλ
,

where Q is the total output, Q = x+ y, λ is the reciprocal of demand elasticity
and λ > 0. At the second stage in which governments’ subsidies are given, firm
1 and firm 2 choose outputs to maximize their profits

π1 = (P − (c1 − s1))x,

and
π2 = (P − (c2 − s2))y.

The first-order conditions of the profit maximization are given by

∂π1
∂x

=
(1− λ)x+ y

(x+ y)λ+1
− cx = 0,

and
∂π2
∂y

=
(1− λ)y + x

(x+ y)λ+1
− cy = 0,
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where cx = c1 − s1 and cy = c2 − s2 for notational simplicity.1 We call the pro-
duction cost including the subsidy an actual cost. Although we will show later
that the actual costs with the optimal subsidies are non-negative, we suppose
for a time being that cx > 0 and cy > 0. From the first-order conditions, the
implicit forms of firms’ best responses are derived as

(1− λ)x+ y = cx(x+ y)
1+λ, (1)

and
(1− λ)y + x = cy(x+ y)

1+λ. (2)

Dividing (1) by (2) yields

y =
k − (1− λ)

1− k(1− λ)
x, x+ y =

(1 + k)λ

1− k(1− λ)
x where k =

cx
cy
.

The first two equations are substituted into (1) and (2), and we solve the resul-
tant equations for the corresponding outputs to obtain

xC =
(2− λ)

1
λ (cy − (1− λ)cx)

λ(cx + cy)
λ+1
λ

, (3)

and

yC =
(2− λ)

1
λ (cx − (1− λ)cy)

λ(cx + cy)
λ+1
λ

, (4)

where superscript C is attached to variables associated with the Cournot point.
In order to assure the nonnegativity of Cournot outputs, we make the following
assumptions.

Assumption 1. (1) 0 < λ < 2 and (2) 1− λ < k <
1

1− λ
when λ < 1.

For the convenience of latter considerations, we define by Ω the feasible set
of demand elasticity and the actual cost ratio that satisfy Assumption 1,

Ω = {(λ, k) | 0 < λ < 2, and 1− λ < k <
1

1− λ
for λ < 1}.

The Cournot outputs in (3) and (4) are substituted into the profit functions to
obtain the Cournot profits:

πC1 =
(2− λ)

1−λ
λ

λ

(cy − (1− λ)cx)
2

(cx + cy)
1+λ
λ

, (5)

and

πC2 =
(2− λ)

1−λ
λ

λ

(cx − (1− λ)cy)
2

(cx + cy)
1+λ
λ

. (6)

1 It can be checked that the second-order conditions are satisfied for any x and y that solve
the first-order conditions.
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For later analysis, we point out that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
sign

"
∂

∂y

µ
∂π1
∂x

¶
|(x,y)=(xC ,yC)

#
= sign

∙
∂xC

∂s2

¸
,

sign

"
∂

∂x

µ
∂π2
∂y

¶
|(x,y)=(xC ,yC)

#
= sign

∙
∂yC

∂s1

¸
,

(7)

where the left hand sides are the signs of the cross derivatives of the marginal
profit functions evaluated at the Cournot point and the right hand sides are the
cross effects of the Cournot outputs caused by a change in the subsidy of the
rival government, for instance,

∂

∂y

µ
∂π1
∂x

¶
|(x,y)=(xC ,yC)

=
cy

(xC + yC)2+λ

µ
2− λ

(cx + cy)1+λ

¶ 1
λ ¡
1− (1 + λ− λ2)k

¢
and,

∂xC

∂s2
=
cy

λ2

µ
2− λ

(cx + cy)1+2λ

¶ 1
λ ¡
1− (1 + λ− λ2)k

¢
.

The terms in the square brackets in the left hand side of (7) refers to the
definitions of a strategic substitute and a strategic complement. The output of
firm 1 is strategic substitutes or strategic complements according to whether
1 − (1 + λ − λ2)k is negative or positive. In the similar way, it can be shown
that the output of firm 2 is a strategic substitute and a strategic complement
according whehter k − (1 + λ− λ2) is negative or positive. It is not difficult to
show that an increase of the subsidy of one government increases the output of
its firm. Hence the equlity in (7) implies that if the output of firm 1 is a strategic
substitute to the output of firm 2, then an increase of the subsidy given by F -
government decreases the output of firm 1 via increasing the output of firm 2.
In the same way, if the output of firm 1 is a strategic complement to the output
of firm 2, then an increase of the subsidy given by the F -government increases
the output of firm 1 through increasing the output of firm 2. Figure 1 shows the
devisions of the feasible set Ω by the stragegic characteristics of the outputs.2

The set Ω is shaded in gray and is divided into the four parts by two curves,
k = 1 + λ− λ2 and k(1 + λ− λ2) = 1. There, ”S” and ”C” stand for strategic
substitute and strategic complement. Thus the region denoted by (S,C) means
that firm 1 treats its output as a strategic substitute whereas firm 2 considers its
output as a strategic complement for (λ, k) belonging to the region, and another

2We refer to λ∗ and the points denoted by A and a later.
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combinations are defined in the same way.

Figure 1. Division of feasible (λ, k) region Ω

2.2 Output Dynamics

We turn our attention to an output adjustment process. We first derive local sta-
bility conditions and then consider the nonnegativity conditions for the output
trajectories. From (1) and (2), the adjustment process with native expectations
can be written as the implicit equations,⎧⎨⎩ (1− λ)x(t+ 1) + y(t) = cx(x(t+ 1) + y(t))

1+λ,

x(t) + (1− λ)y(t+ 1) = cy(x(t) + y(t+ 1))
1+λ.

(8)

The first equation will be denoted by γ1(x(t + 1), y(t)) = 0 and the second
equation by γ2(x(t), y(t + 1)) = 0 as it is impossible to solve explicitly (8) for
x(t+ 1) and y(t+ 1) unless λ = 1.3

The fixed point of this process has been already obtained in (3) and (4). To
find local stability conditions, we derive the Jacobi matrix by linearizing equa-
tions of (8) in the neighborhood of the Cournot point and locate the eigenvalues.
Notice that the Jacobi matrix has the special form,

J =

⎛⎜⎜⎝ 0
(λ2 − λ− 1)k + 1

(1 + 2λ− λ2)k − (1− λ)
(λ2 − λ− 1) + k

(1 + 2λ− λ2)− (1− λ)k
0

⎞⎟⎟⎠ .
3A two-stage game with unit-elastic demand (i.e., λ = 1) is considered in Matsumoto and

Szidarovszky (2009).
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Since trace of the Jacobian matrix is zero, stability is confirmed if the absolute
value of the product of the eigenvalues is less than unity:

|Ψ(λ, k)| =
¯̄̄̄
− (λ2 − λ− 1)k + 1
(1 + 2λ− λ2)k − (1− λ)

(λ2 − λ− 1) + k
(1 + 2λ− λ2)− (1− λ)k

¯̄̄̄
< 1. (9)

Solving Ψ(λ, k) = −1 yields k = −1, λ = 0 or λ = 2. They contradict to
Assumption 1 and to the fact that the actual cost ratio is positive. We omit this
case for further considerations. Solving Ψ(λ, k) = 1 for k yields two solutions
for which loss of stability occurs:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ1(λ) =
2 + λ

³
2 + λ− 3λ2 + λ3 − (λ+ 1)(λ− 2)

p
λ2 − 4λ+ 5

´
2 + λ(2− 4λ+ λ2)

,

ψ2(λ) =
2 + λ

³
2 + λ− 3λ2 + λ3 + (λ+ 1)(λ− 2)

p
λ2 − 4λ+ 5

´
2 + λ(2− 4λ+ λ2)

.

(10)

For all k above the k = ψ1(λ) curve and below the k = ψ2(λ) curve, the absolute
value |Ψ(λ, k)| is greater than one. so the Cournot point is locally unstable. In
the same way, for all k between these curves, the absolute value |Ψ(λ, k)| is less
than unity implying the local asymptotic stability of the Cournot point.
Next we examine the nonnegativity of trajectories generated by (8). From

the first equation of (8), it can be found that x(t+1) = 0 for y(t) = ymax where

ymax =

µ
1

cx

¶ 1
λ

.

It is also found that the output x(t+1) arrives at its maximum xmax for y(t) =
ym where

xmax =

µ
1

cx(1 + λ)1+λ

¶ 1
λ

and ym = λxmax

The relation xmax + (1 − λ)ymax = cy (xmax + ymax)
1+λ describes that firm 2

chooses to produce ymax when it expects that the competition will produce xmax.
Arranging this equation yields

k = φ1(λ) =

1− λ+

µ
1

(1 + λ)1+λ

¶ 1
λ

Ã
1 +

µ
1

(1 + λ)1+λ

¶ 1
λ

!1+λ . (11)

For k < φ1(λ), a trajectory of output x can be negative. So k ≥ φ1(λ) is the
nonnegativity condition for the trajectories when the actual cost ratio is less
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than unity. In the same way we can obtain the nonnegativity condition for the
trajectories when the actual cost ratio is greater than unity as k ≤ φ2(λ) where

φ2(λ) =

Ã
1 +

µ
1

(1 + λ)1+λ

¶ 1
λ

!1+λ

1− λ+

µ
1

(1 + λ)1+λ

¶ 1
λ

µ
=

1

φ1(λ)

¶
. (12)

We denote the unstable and nonnegativity region by

ΩU = {(λ, k) ∈ Ω | φ1(λ) < k < ψ1(λ) or ψ2(λ) < k < φ2(λ)}.

Whenever a pair of (λ, k) falls inside region ΩU , the Cournot point becomes
locally unstable. Although the local instability means global instability in a
linear dynamic model, this is not a case in the nonlinear case. We examine
what kind of dynamics the output adjustment process (8) can generate in the
case of local instability. However, equation (8) is given in implicit forms, so it
is difficult to examine dynamics analytically. At the expense of generality, we
perform numerical simulations after determining the optimal trade policy of the
governments.

2.3 Welfare Maximization

At the first stage of the two-stage game, the governments determine the optimal
subsidy levels to maximize the national welfare

W1(s1, s2) = πC1 (s1, s2)− s1xC(s1, s2), (13)

and
W2(s2, s1) = πC2 (s2, s1)− s2yC(s2, s1), (14)

where for notational simplicity, H- and F -governments will be also indexed by
"1" and "2". Our first interest is on the condition under which the government
decides to give a subsidy or to charge a tax. Assuming an interior optimum and
solving the first-order conditions of the welfare maximization for si yield

s1 = x
C dP

dQ| {z }
(−)

∂yC/∂s1

∂xC/∂s1| {z }
(+)

R 0 according to ∂yC

∂s1
Q 0,

and

s2 = y
C dP

dQ| {z }
(−)

∂xC/∂s2

∂yC/∂s2| {z }
(+)

R 0 according to ∂xC

∂s2
Q 0
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where P is the price function and Q = x + y the outputs of the industry.4

Since the sign of the cross derivative depends on the strategic characteristic of
the output as shown in (7), the optimal trade policy of the governments are
summarized as follows.

Lemma 1 A government pays a subsidy to its firm if the rival firm considers
its own output as strategic substitute and levies an export tax to its firm
if the rival firm considers its own output as strategic complement.

Our second interest is on subsidy differential. Neary (1994) shows that the
subsidy differential can be expressed as

s1 − s2 = −
ξ

ψ
(c1 − c2)

where, in his notation5, ξ and ψ are given by

ξ = 2 +R+ αα∗R2

and
ψ = 2 +R.

Using cx and cy, we can express the subsidy differential in terms of the actual
cost differential,

s1 − s2 = −
ξ

ψ + ξ
(cx − cy)

where ψ + ξ = 2(2 + R) + αα∗R2. Neary (1994) has already shown that ξ > 0
and ψ + ξ > 0 due to the second-order conditions of the welfare maximization
problems. Thus we can summarize the result on the subsidy differential as
follows.

Lemma 2 The government gives a subsidy in such a way that the firm with the
lower actual cost receives the higher subsidy than the firm with the higher
actual cost.

Notice that Lemma 1 is concerned with the sign of subsidy and Lemma 2 is
concerned with the subsidy differential. Based on these lemmas, we can arrive
at the following optimal subsidy policy.

4For instance, the first-order condition for the H-governemnt is

∂πC1
∂x

∂xC

∂s1
+

∂πC1
∂y

∂yC

∂s1
+

∂πC1
∂s1

− x1 − s1
∂xC

∂s1
= 0

where
∂πC1
∂x

= 0,
∂πC1
∂y

= xC
∂P

∂Q

∂Q

∂y
,
∂Q

∂y
= 1 and

∂πC1
∂s1

= xC .

5R is a measure of the concavity of demand curve defined by QP 00
P
, α and α∗ are the

market share of firm 1 and firm 2 at the Cournot point, respectively, α = xC

QC
and α∗ = yC

QC

where QC = xC + yC .

9



Theorem 1 The interior optimal subsidies, se1 and se2, depend on the actual
cost ratio and the strategic characteristics of the outputs in the following way:

(1) If both outputs are strategic substitutes, then the governments give subsidies
to their firms such that

se1 ≥ se2 > 0 if cy ≥ cx and se2 > se1 > 0 if cx > cy.

(2) If both outputs are strategic complements, then the governments charge ex-
port taxes to their firms such that

0 > se1 ≥ se2 if cy ≥ cx and 0 > se2 > se1 if cx > cy.

(3) In the mixed case when one firm treats its output as a strategic substitute
and the other firm treats its output as a strategic complement, then the
firm with the higher actual cost receives an export tax while the firm with
the lower cost receives an export subsidy;

se1 > 0 > s
e
2 if cy > cx and s

e
2 > 0 > s

e
1 if cx > cy.

When c1 = c2, as seen in Figure 1, the outputs are strategic substitutes if
demand is elastic and are strategic complements if demand is inelastic. Thus
parts (1) and (2) of Theorem 1 can be restated as follows6:

Corollary 1 When the firms are symmetric, an export subsidy is optimal if
demand is elastic and an export tax is optimal if demand is inelastic

In order to get a complete description of the dynamics in the international
subsidy game, we have to specify the welfare functions, derive the explicit forms
of the best reply functions of the governments and consider their characteristics
in the policy space. Substituting xC , yC ,QC = xC+yC and PC = (QC)−λ into
(13) and (14) yields the explicit forms of H-government’s welfare function,

W1(s1, s2) =
(2− λ)

1
λ−1

λ(cx + cy)
1
λ+1

(cx + cy − c1(2− λ)) (cy − (1− λ)cx) , (15)

and F -government’s welfare function,

W2(s2, s1) =
(2− λ)

1
λ−1

λ(cx + cy)
1
λ+1

(cx + cy − c2(2− λ)) (cx − (1− λ)cy) . (16)

DifferentiatingW1(s1, s2) andW2(s2, s1) with respect to s1 and s2, respectively,
yields the first-order conditions,

∂W1

∂s1
= βf(s1, s2) = 0 =⇒ f(s1, s2) = 0, (17)

6These are the same as Case 2a and Case 3a of Bandyopadhyay (1997).
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and
∂W2

∂s2
= βg(s2, s1) = 0 =⇒ g(s2, s1) = 0, (18)

where β is a positive constant,

β =
(2− λ)

1
λ−1

λ2(cx + cy)
1
λ+2

> 0,

and f(s1, s2) and g(s2, s1) are defined, respectively, by

f(s1, s2) = (cx + cy)(cy − s1 − (1− λ)c1)(1− λ)λ

+
¡
cy − (1− λ)cx)(cy − s1 − (1 + λ− λ2)c1

¢
,

and

g(s2, s1) = (cx + cy)(cx − s2 − (1− λ)c2)(1− λ)λ

+
¡
cx − (1− λ)cy)(cx − s2 − (1 + λ− λ2)c2

¢
.

The second-order conditions are

∂2W1

∂s21
= β

df(s1, s2)

ds1
< 0⇔ df(s1, s2)

ds1
< 0, (19)

and
∂2W2

∂s22
= β

dg(s2, s1)

ds2
< 0⇔ dg(s2, s1)

ds2
< 0, (20)

where the derivatives are

df(s1, s2)

ds1
= −

n
2s1(1− λ)2 + λ

h
(3− 2λ)cy+(1− λ)c1

io
,

and
dg(s2, s1)

ds2
= −

©
2s2(1− λ)2 + λ [(3− 2λ)cx+(1− λ)c2]

ª
.

A best reply function of theH-government is derived first. Solving f(s1, s2) =
0 with respect to s1 yields a pair of roots,

s1S,L = −
1

2(1− λ)2

n
λ [(1− λ)c1 + (3− 2λ)cy]± (2− λ)

p
D1(s2)

o
, (21)

where s1L is the larger root, s1S is the smaller root and D1(s2) denotes the
dicsriminant defined by

D1(s2) = (cy − (1− λ)c1)
2 + 4(1− λ)λ2c1cy.

It is clear that D1(s2) > 0 if λ < 1. In the case of λ > 1, it is possible to
determine two threshold values of s2 that makes D1(s2) = 0,

s
(±)
2 = c2 + (λ− 1)

n
(1− 2λ2)± 2λ

p
λ2 − 1)

o
c1.
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It then follows that D1(s2) > 0 for s2 > s
(+)
2 or s2 < s

(−)
2 if λ > 1.

Next we examine which root of (21) satisfies the second-order condition.
Supposing D1(s2) > 0, multiplying both sides of (21) by 2(1 − λ)2 and then
moving the first two terms of the right hand side to the left, we obtain the
alternative expressions,

2(1− λ)2s1L + λ((1− λ)c1 + (3− 2λ)cy) = (2− λ)
p
D1(s2),

and
2(1− λ)2s1S + λ((1− λ)c1 + (3− 2λ)cy) = −(2− λ)

p
D1(s2).

The left hand sides of both equations are equal to−df(s1L , s2)/ds1 and−df(s1S , s2)/ds1,
which should be positive if the root satisfies the second-order condition. The
right hand side of the first equation is positive and the one of the second equa-
tion is negative under the assumptions of λ < 2 and D1(s2) > 0. Hence, given
s2, s1L is the root that satisfies the first-order and the second-order conditions
and therefore it is the best reply function of the H-government:

r1(s2) = −
λ [(1− λ)c1 + (3− 2λ)cy]− (2− λ)

p
D1(s2)

2(1− λ)2
. (22)

In the same way, we can show that the following solution of g(s2, s1) = 0 with
respect to s2 is the best reply function of the F -government:

r2(s1) = −
λ [(1− λ)c2 + (3− 2λ)cx]− (2− λ)

p
D2(s1)

2(1− λ)2
(23)

where D2(s1) is the discriminant defined by

D2(s1) = (cx − (1− λ)c2)
2
+ 4(1− λ)λ2c2cx.

Similary to the previous case, D2(s1) > 0 if λ < 1. In the case of λ > 1, the
critical values of s1 making D2(s1) = 0 are obtained as

s
(±)
1 = c1 + (λ− 1)

n
(1− 2λ2)± 2λ

p
λ2 − 1)

o
c2

where D2(s1) > 0 for s1 > s
(+)
1 or s1 < s

(−)
1 if λ > 1.

We will next impose the following two external constraints on the subsidy
levels, si, since the governments must behave with control. The first constraint
is the lower bounds sLi of the subsidy, which is the upper bound of the export
tax and is negative. Its specific value will be determined later. The second
constraint requires an upper bound sUi of the subsidy, which may be due to
the limited amount of governments’ budgets, and is assumed to be equal to the
production cost. Intuitively speaking, in determining their export subsidies, the
governments will not give more than the production costs of their firms.

Assumption 2 sLi ≤ si ≤ sUi for i = 1, 2 where sLi < 0 and sUi = ci > 0.
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If demand is elastic, then r1(s2) restricted to the interval [sL2 , s
U
2 ] and r2(s2)

restricted to the interval [sL1 , s
U
1 ] are the constrained best reply functions. They

are continuous on these intervals. If demand is inelastic, then the best reply
functions restricted these domains are modified to be piecewise continuous as it
will be shown later.
Let us examine in more detail the shapes of the best reply functions in the

case of λ > 1. r1(s2) is defined for only s2 ≥ s(+)2 and s2 ≤ s(−)2 so it is not
defined for s(−)2 < s2 < s

(+)
2 . In Figure 2, the downward-sloping dotted-solid

bold curve is shown in the lower-left and the slightly upward-sloping bold curve
in the upper-right part of the figure. They are two pieces of the s1 = r1(s2)
curve. The upward-sloping solid line is the df1(s1, s2)/ds = 0 locus. Let sM1 be
the solution of df1(s1, s

(+)
2 )/ds = 0. Then s(+)2 < c2 and c1 < sM1 because for

1 < λ < 2,

s
(+)
2 = c2 + (λ− 1){(1− 2λ2) + 2λ

p
λ2 − 1}| {z }

(−)

c1 < c2

and

sM1 = λ

(
2λ2 − λ− 2 + λ(3− 2λ)

r
λ+ 1

λ− 1

)
| {z }

≥1

c1 > c1.

The direct substitution of s(+)2 into r1(s2) shows that r1(s
(+)
2 ) = sM1 while

sU1 = c1 and sU2 = c2 by definition. It then follows that r1(s2) > sU1 for
s
(+)
2 ≤ s2 ≤ sU2 . This imply that the best reply function violates Assumption 2
and thus is not defined for s(+)2 ≤ s2 ≤ sU2 either. To remedy this unfavorable
property of r1(s2), we extend it to the interval [sL2 , s

U
2 ] in the following way.

On the upward-sloping solid curve of Figure 2, 0 = df(s1, s2)/ds1 holds and the
second order condition is satisfied under this curve. Let sm1 be the solution of
0 = df(s1, s

(−)
2 )/ds1.

7 Under the assumption that sm1 ≤ sL1 , s`2 is defined so that
r1(s

`
2) = s

L
1 and s

`
2 ≤ s

(−)
2 . Then define the piecewise best reply function of the

H-government by

R1(s2) =

⎧⎨⎩ r1(s2) for sL2 ≤ s2 ≤ s`2,

sL1 for s`2 < s2 ≤ sU2 .
(24)

In Figure 2, the bold curve kinked at (sL1 , s
`
2) is the best reply curve defined

by (24). In the same way, the piecewise continuous best reply function of the
F -government is also defined under the assumption that sm2 ≤ sL2 :

R2(s1) =

⎧⎨⎩ r2(s2) for sL1 ≤ s1 ≤ s`1,

sL2 for s`1 < s1 ≤ sU1
(25)

7sm1 = λ 2λ2 − λ− 2− λ(3− 2λ) λ+ 1

λ− 1
c1. It also holds that rH(s

(−)
2 ) = sm1 .
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where s(−)1 is the smaller root that solves D2(s1) = 0, sm2 is the solution of
equation df(s2, s

(−)
1 )/ds2 = 0 and s`1 satisfies r2(s

`
1) = s

L
2 .

Piecewise continuous best reply function of the H-government

2.4 Determination of the Optimal Subsidy

In this section, we look for an explicit solution of the trade policy that is deter-
mined by an intersection of the best response curves of the two governments.
The nonlinearity of the best reply functions may lead to multiple optimal points.
Since the specific forms of the best reply functions depend on the cost structure
and demand elasticity, we first consider the special case with symmetric firms
(i.e., c1 = c2) and then proceed to the general case.
Substitute c1 = c2 = c into (22) and (23) and suppose that λ < 1. In Figure

3 in which we take λ = 0.8 and c = 1,8 the reaction curve of the H-government
takes a U -shaped profile with respect to the s2 axis and so does the reaction
curve of the F -government with respect to the s1 axis.9 The area surrounded by
the dotted rectangle is the feasible region defined by [sL1 , s

U
1 ]×[sL2 , sU2 ]. Since the

two governments are symmetric with respect to the diagonal of the (s1, s2) space
under the assumption of identical production costs, their intersection occurs at
a point on the diagonal. Solving r1(s2) = r2(s1) with the condition s1 = s2
yields two positive solutions, which are denoted by Ee and EA in Figure 3.
Two solutions imply that the governments have two choices, the lower (interior)
subsidies,

Ee = (se1, s
e
2) with s

e
1 = s

e
2 =

λ(1− λ)c

2(3− 2λ) > 0, (26)

8Point (0.8, 1) corresponds to point A in Figure 1.
9To keep notational consistency, we denote the best reply functions in the case of λ < 1

by Ri(si) for i, j = 1, 2 and i 6= j.
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and higher (cornered) subsidies,

EA = (sA1 , s
A
2 ) with s

A
1 = c1(= s

U
1 > 0) and s

A
2 = c2(= s

U
2 > 0). (27)

Figure 3. Determination of the optimal subsidy in the case of λ < 1

If demand is inelastic (i.e., λ > 1), then there are three optimal points
denoted by Ee, Ea and Eb, as shown in Figure 4 in which we take λ = 1.1 and
c = 1.10 The solid curve and the dotted curve are the best reply curves of the
H-government and the F -government, respectively. It can be seen that at an
interior point, Ee, the governments charge export taxes,

Ee = (se1, s
e
2) with s

e
1 = s

e
2 =

λ(1− λ)

2(3− 2λ)c < 0. (28)

The piecewise-continuous curves intersect at two other points, Ea and Eb, which
are born because we modified the best reply functions. The two points describe
a mixed trade policy in a sense that one government chooses to give an export
subsidy and the other government to levy an export tax,

Ea = (sa1 , s
a
2) with s

a
1 = s

L
1 < 0 and s

a
2 = rF (s

L
1 ) > 0 (29)

and
Eb = (sb1, s

b
2) with s

b
1 = rH(s

L
2 ) > 0 and s

b
2 = s

L
2 < 0. (30)

10Point (1.1, 1) corresponds to point a in Figure 1.
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Figure 4. Determination of the optimal subsidy in the case of λ > 1

We now determine the appropriate value of sLi . The best reply functions
are obtained under the assumptions that sm1 ≤ sL1 and sm2 ≤ sL2 , which can be
spelled out as

λ

Ã
2λ2 − λ− 2− (3− 2λ)λ

r
λ+ 1

λ− 1

!
c ≤ sLi (31)

The equilibrium subsidies are constrained by the two conditions: first they must
be greater than the lower bound,

λ(1− λ)

2(3− 2λ)c ≥ s
L
i (32)

second, the interior equilibrium point is located in the region where the second-
order conditions are satisfied. To this end, the following condition is necessary,

λ(3λ− 4)c
2− 7λ+ 4λ2

≥ λ(1− λ)c

2(3− 2λ) , (33)

where the value of the left hand side corresponds to the coordinate of an in-
tercept of the two loci, df(s1, s2)/ds1 = 0 and dg(s1, s2)/ds2 = 0. These three
constraint curves cross at the point (15−

√
17

8 , 61−11
√
17

16(3−
√
17)
c) ' (1.36,−0.87c) and

(33) is always true for λ ≤ 15−
√
17

8 . If we assume the following assumption, then
these three conditions are satisfied:

Assumption 3. smi ≤ sLi ≤
λ(1− λ)

2(3− 2λ) and λ ≤ λ∗ =
15−

√
17

8
.

We summarize the above dervation in the following theorem:
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Theorem 2 Suppose that the firms are symmetric and Assumption 3 holds.
The governments have two distinctive policies of an export subsidy if demand is
elastic and three distinctive policies (one is an export tax and the other two are
mixed policies) if demand is inelastic.

Now we proceed to the determination of the optimal trade policy when
the firms are asymmetric (i.e., c1 6= c2). In principle, the optimal subsidy is
determined by an intersection of the best reply curves of the governments. By
continuity, the intersection is located in the first quadrant of the (s1, s2) space
if the cost difference is small and in the second or fourth quadrant if it is large.
However, due to the complicated expressions of (22) and (23), we cannot derive
general explicit solutions so we specify the parameters’ value and numerically
obtain the intersections when the cost difference is large. We start with the case
of elastic demand. With c1 = 1 and λ = 0.8 we take c2 = 1.25 in Figure 5(A)
where se1 ' 0.49 and se2 ' −0.22. Similary we select c2 = 0.75 in Figure 5(B)
where se1 ' −0.16 and se2 ' 0.42. The actual cost ratios are

k =
1− 0.49

1.25− (−0.22) ' 0.34 and k =
1− (−0.16)
1.25− 0.42 ' 3.45.

When (λ, k) = (0.8, 0.34) or (λ, k) = (0.8, 3.45), the government adopt the
mixed trade policy: one government gives an export subsidy to its firm and the
other government levies an export tax on its firm. Notice that the lower-cost
firm enjoys the higher subsidy.

(A) c1 = 1 and c2 = 1.25 (B) c1 = 1 and c2 = 0.75

Figure 5. Asymmetric firms and elastic demand (λ = 0.8)

We turn to the case of inelastic demand. With c1 = 1 and λ = 1.1, we take
c2 = 1.05 in Figure 6(A) where se1 ' −0.32 and se2 ' 0.17 and c2 = 0.95 in
Figure 6(B) where se1 ' 0.17 and se2 ' −0.31. The actual cost ratios become

k =
1− (−0.32)
1.05− 0.17 ' 1.50 and k =

1− 0.17
1.05− (−0.31) ' 0.66.
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When (λ, k) = (1.1, 1.5), The H-government levies an export tax and the F -
government gives an export subsidy. On the other hand when (λ, k) = (1.1, 0.66),
the policy is reversed. Notice that the higher-cost firm enjoys the higher subsidy,
which is different from the results obtained by de Meza (1986) and Neary (1994).
This contradiction is pointed out and called a "perverse" case by Bandyopad-
hyay (1997). However, since k > 1 in Figure 6(A) and k < 1 in Figure 6(B), it
can be observed that the firm with the lower actual cost receives higher subsidy,
as a result of the optimal trade policy.

(A) c1 = 1 and c2 = 1.05 (B) c1 = 1 and c2 = 0.95

Figure 6. Asymmetric firms and inelastic demand (λ = 1.1)

3 Dynamics with Elastic Demand
The total dynamic system of the two-stage game consists of the policy dynamic
system with adaptive expectations,⎧⎨⎩ s1(t+ 1) = (1− α1)s1(t) + α1R1(s2(t)),

s2(t+ 1) = (1− α2)s2(t) + α2R2(s1(t)),
(34)

where αi is the adjustment coefficient with 0 < αi ≤ 1, and the output dynamic
system with naive expectations,⎧⎨⎩ (1− λ)x(t+ 1) + y(t) = (c1 − s1(t))(x(t+ 1) + y(t))1+λ,

x(t) + (1− λ)y(t+ 1) = (c2 − s2(t))(x(t) + y(t+ 1))1+λ.
(35)

Notice that the output dynamic system depends on the variables s1 and s2 of
the policy dynamic system but not vice versa. In this section we consider the
total dynamics when demand is elastic.
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We first examine the local stability of the dynamic process of the optimal
policy selection. Its Jacobian matrix is

J =

⎛⎜⎜⎜⎝
1− α1 α1

∂RH
∂s2

α2
∂RF
∂s1

1− α2

⎞⎟⎟⎟⎠
with trace

trJ = 2− (α1 + α2)

and determinant

detJ = (1− α1)(1− α2)− α1α2
∂RH
∂s2

∂RF
∂s1

.

We can recall that the necessary and sufficient conditions for the local asymp-
totic stability of a two-dimensional system are as follows:

1− trJ + detJ = α1α2(1− γ) > 0,

1 + trJ + detJ = 2(2− (α1 + a2)) + α1α2(1− γ) > 0,

1− detJ = α1 + α2 − α1α2(1− γ) > 0,

(36)

with

γ =
∂RH
∂s2

∂RF
∂s1

.

The first and second conditions are satisfied if γ < 1 and so is the third condition
if γ > −1. Therefore the stability condition is |γ| < 1. We will next check
whether or not this stability condition is fulfilled in the cases of symmetric and
asymmetric firms.

3.1 Symmetric firms: c1 = c2
The derivatives of the best reply functions evaluated at the steady state are
symmetric if the production costs are identical. Furthermore, in the case of
elastic demand, these are obtained as

0 >
∂rH(s2)

∂s2
=

∂rF (s1)

∂s1
=
−5 + 13λ− 11λ2 + 3λ3

(λ− 1)2(13− 15λ+ 4λ2)
> −1 at Ee,

and
∂rH(s2)

∂s2
=

∂rF (s1)

∂s1
=

λ2 − 2λ− 1
λ− 1 > 1 at EA.

All derivatives are independent of the value of the common production cost.
Since γ is the product of these derivatives,

γ =

µ
−5 + 13λ− 11λ2 + 3λ3

(1− λ)2(13− 15λ+ 4λ2)

¶2
< 1 at Ee,
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and

γ =

µ
1 + 2λ− λ2

1− λ

¶2
> 1 at EA.

The stability conditions (36) confirm that Ee is locally stable and EA is locally
unstable.
By (26), the optimal export subsidies of the two governments are identical.

In consequence, the actual cost ratio is unity when the firms are symmetric.
Returning to the stability condition of the output dynamics, (9), we see that
the output equilibrium is locally stable, since

¯̄
Ψ(λ, k)|k=1

¯̄
=

¯̄̄̄
¯−
µ
λ− 1
λ− 3

¶2 ¯̄̄̄¯ < 1 for 0 < λ < 1.

It is possible to numerically confirm that the stationary points Ee in the policy
space and C in the output space are also stable. We summarize these results:

Theorem 3 If the production costs are identical and demand is elastic, then (i)
the inner stationary point Ee in the policy space is locally asymptotically stable
while the corner point EA is locally unstable; (ii) the output stationary point
associated with Ee is locally asymptotically stable.

3.2 Asymmetric firms: c1 6= c2
In this section we consider policy and output dynamics when the firms are
asymmetric (c1 6= c2) and will see that more exotic phenomena emerge. The
policy dynamic system (34) determines the feedback effect through the export
subsidy policy on the subsequent behavior of the firms and (35) determines
the output adjustment, aiming to arrive at the stationary point. The dynamic
structure of (35) resembles to that of the nonlinear duopoly model studies by
Puu (2003), in which it is shown that the cost difference is a source of complex
dynamics. The cost difference also increases nonlinearities involved in (34). One
drawback of introducing the cost difference is to make the best reply function
more complicated and derivations of analytical solutions very difficult in not
impossible. In such cases, it is a natural way to specify the model and use
numerical simulations to examine how this second-stage game works.
We take c1 = 1, c2 = 1.0567, α1 = α2 = 0.8 and λ = 0.98. In Figure

7(A) in which two trajectories, one starting at point a and the other at point
b, are illustrated, the adaptive adjustment process of the traded policy leads
to an asymptotically stable equilibrium point. On the other hand, in Figure
7(B), given the optimal trade policy, the unstable Cournot point gives rise to
chaotic fluctuations. This is a typical example of the situation with λ < 1 in
which chaotic output dynamics are born although the trade policy is stable.
The actual cost ratio plays a crucial role for the birth of complicated dynamics.
The optimal trade policy is obtained as se1 ' 0.703518, se2 ' −0.64385, and the
actual cost ratio is

k =
c1 − se1
c2 − se2

' 0.174345.
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Due to (10) and (11), the threshold values of the stability and feasibility are

ψ2(λ)|λ=0.98 ' 0.18124 and φ1(λ)|λ=0.98 ' 0.17414.

Therefore we have
ψ2(λ)|λ=0.98 > k > φ1(λ)|λ=0.98.

The first inequality implies instability of the output stationary point and the
second inequality guarantees the nonnegativity of a trajectory. If k gets closer
to φ1(λ)|λ=0.98, then the output fluctuates more aperiodically.

(A) Stable policy equilibrium (B) Chaotic output trajectory

Figure 7. Stable trade policy and chaotic output dynamics

In Figure 8(A) the production cost of firm 2 is increased to c2 = 1.2 with
all other parameters kept fixed. As a result, the stationary point of the policy
equilibrium is destabilized. In spite of this instability, the nonlinearities of the
system prevent the dynamics from diverging and therefore generate bounded
fluctuations around the stationary state (se1, s

e
2). In Figure 8(B) c2 is further

increased to c2 = 1.34 and the degree of elasticity is decreased to 0.96 from
0.98. The policy dynamic system is simulated for 20,000 iterations. The first
5,000 are discarded and the remaining data are plotted in the (s1, s2) space. It
shows the birth of chaotic attoractor. This shows that trajectories aperiodically
fluctuate in the long-run. Since the output dynamics depends on the policy
dynamics, it also fluctuates aperiodically in the output space. We summarize
these numerical results:

Theorem 4 If the firms are asymmetric and the demand is elastic, then (i)
the output dynamics can exhibit chaotic fluctuations even if the policy dynamics
is stable; (ii) the policy dynamics can become chaotic and so can the output
dynamics.
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(A) (B)

Figure 8. Birth of chaotic attractors

4 Dynamics with Inelastic Demand

4.1 Symmetric firms: c1 = c2
In the case of inelastic demand, the derivatives evaluated at the inner stationary
point Ee have the same form as the ones in the case of elastic demand. Due
to Assumption 3, it is defined for 1 < λ < λ∗ = 15−

√
17

8 , which is the smaller
root of equation 13−15λ+4λ2 = 0. The derivatives evaluated at the stationary
point are

∂rH(s2)

∂s2
=

∂rF (s1)

∂s1
=
−5 + 13λ− 11λ2 + 3λ3

(λ− 1)2(13− 15λ+ 4λ2)
< −1 at Ee.

It follows that the product of the derivatives,

γ =

µ
−5 + 13λ− 11λ2 + 3λ3

(1− λ)2(13− 15λ+ 4λ2)

¶2
> 1 at Ee.

Hence Ee is locally unstable. Since the product of the derivatives is zero at
the other two equilibria, Ea and Eb, both points are locally stable. In addition
to the stable stationary points, there exists a stable period-2 cycle along the
diagonal s1 = s2. The periodic points are (sL1 , s

L
2 ) and (s

b
1, s

b
2) with

(sb1, s
b
2) = (R1(s

L
2 ), R2(s

L
1 )) and (s

L
1 , s

L
2 ) = (R1(s

b
2), R2(s

b
1)).

Thus the dynamics system (34) with λ > 1 is characterized by multistability,
i.e., coexistence of two attractors and the stable period-2 cycle. In consequence,
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we can construct their basins of attraction to see how the asymptotic behavior
of the trajectories depends on the choice of the initial point.
Figure 9 illustrates the basins of attraction when the policies are naively

adjusted (i.e., α1 = α2 = 1). The sets of point in the policy space such that
the initial points chosen in the green region converges to the point Ea, those in
the blue region evolve to the point Eb. Two trajectories, one starting at point
a in the green region and the other starting at point b in the blue region are
shown in Figure 9(A). The red region represents the basin of attraction of the
period-2 cycle and consists of points which generate trajectories converging to
the period-2 cycle. One stable trajectory is depicted in Figure 9(B) in which
an initial point denoted my c is selected in the upper-right red region. The
trajectory starting at point c repeatedly jumps from one red region to the other
red region and gradually approaches the periodic point on the diagonal. The
following theorem provides the summary of the optimal trade policy:

Theorem 5 If the firms are symmetric and the demand is inelastic, then three
attractors coexist: the two stable fixed points, Ea = (sa1 , s

a
2) and E

b = (sb1, s
b
2),

and the stable period-2 cycle EcA = (scA1 , s
cA
2 ) and E

cB = (scB1 , s
cB
2 ) where

sa1 = s
L
1 , s

a
2 = RF (s

L
1 ), s

b
1 = RH(s

L
2 ), s

b
2 = s

L
2

and
(scA1 , s

cA
2 ) = (s

a
1, s

b
2) and (s

cB
1 , s

cB
2 ) = (s

b
1, s

a
2).

(A) Basins of Ea and Eb (B) Basin of a period-2 cycle

Figure 9. Basins of attraction when λ > 1

4.1.1 Mixed Trade Policy: Ea or Eb

We now turn our attention to the output dynamics associated with the trade
policy determined at point Eb in which the H-government gives an export sub-
sidy sb1 > 0 to firm 1 and the F -government imposes an export tax sb2 < 0 on
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firm 2. Since the equilibrium point Eb is stable, it is safe to assume that each
firm receives the optimal value of the trade policy from the beginning of the
dynamic process. Thus the output dynamic system reduces to⎧⎨⎩ (1− λ)x(t+ 1) + y(t) = (c1 − sb1)(x(t+ 1) + y(t))1+λ,

x(t) + (1− λ)y(t+ 1) = (c2 − sb2)(x(t) + y(t+ 1))1+λ.
(37)

In the numerical example presented in Figure 10, we take c1 = c2 = 1, sU1 = c1,
sU2 = c2, s

L
1 = s

L
2 = −0.854 and λ = 1.1. The stationary values of the subsidies

are sb1 ' 0.83 and sb2 = −0.854(= sL2 ). The ratio of the actual costs is

k =
c1 − se1
c2 − s22

' 0.09153.

By (10) and (11), we can obtain the threshold values of the stability and feasi-
bility,

ψ2(λ)|λ=1.1 ' 0.121695 and φ1(λ)|λ=1.1 ' 0.09036.
Therefore we have

ψ2(λ)|λ=1.1 > k > φ1(λ)|λ=1.1.

This inequality condition implies that the stationary point of the outputs is
locally unstable but its trajectory can stay within the feasible (non-negativity)
region. The output trajectory depicted in Figure 10 remains nonnegative for all
t ≥ 0 and aperiodically fluctuates around the stationary point C.

Figure 10. Birth of chaotic output dynamics

Depending on the values of the actual cost ratio, the output adjustment
system (37) can generate a wide spectrum of dynamics ranging from stable
dynamics to complex dynamics involving chaos. In Figure 11, a bifurcation
diagram for the output is shown. Each point along the horizontal axis is a value
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for the lower bound, sL2 . This is a bifurcation parameter and has the effect of
changing the actual cost ratio through relation,

k =
c1 − rH(sL2 )
c2 − sL2

.

Here the value of sL2 is increased to −0.8 from −0.855 with 0.0025 increment.
For each value of sL2 the output equation is simulated for 1200 iterations. The
first 1000 is discarded to eliminate transient changes. The remaining 200 data is
plotted vertically against for sL2 . As the absolute value of s

L
2 increases, the sta-

tionary point is destabilized, bifurcates to a periodic cycle and finally fluctuates
chaotically via a period-doubling cascade. Under the symmetric assumption
c1 = c2, we can examine the output dynamics associated with point Ea in the
same way. We summarize the results as follows:

Theorem 6 Assume that the firms are symmetric, demand is inelastic and
the governments takes the mixed policy, either Ea or Eb. The output dynamics
exhibits complicated dynamics if its stationary point is locally unstable.

Figure 11. A bifurcation diagram for the output dynamic system (37).

4.1.2 Periodic Trade Policy

The shape of the basin of attraction is sensitive to the value of the adjustment
coefficient αi. Figure 12 illustrates two basins of attraction with two different
values of αi and indicates that the red regions become smaller with decreasing
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value of αi. We will reveal the mechanism which makes the red regions shrink.

(A) α1 = α2 = 0.9 (B) α1 = α2 = 0.86

Figure 12. Basins of attraction with two diferent values of αi

Any trajectory starting from a point in the red region converges to the
period-2 cycle with its periodic points belonging to the diagonal. Hence one
way to consider appearance or disappearance of a period-2 cycle is to restrict
the dynamic system to the diagonal of the policy space by assuming that the
two firms have the same adjustment coefficients, α1 = α2 = α. This assumption
together with the assumption of the identical production costs imply that the
two firms behave identically if an initial point is selected on the diagonal. So
their dynamic behavior can be described by the following one-dimensional map,
which describes a representative firm:

s(t+ 1) = ϕ(s(t)) = (1− α)s(t) + αR(s(t))

with R(s) = R1(s) = R2(s). The fixed point of ϕ(s) is

se =
(1− λ)λ

2(3− 2λ)c

and the derivative of ϕ(s) at the fixed point becomes

dϕ(s)

ds |s=se
=
1

2

µ
2(1− α) +

2α(3λ− 5)
13− 15λ+ 4λ2

¶
.

It is possible to show that the derivative is less than unity for 0 < α ≤ 1 and
1 < λ ≤ λ∗ where λ∗ = (15−

√
17)/8. It then follows that the stability condition

for the fixed point is

−1 < dϕ(s)

ds |s=se

or

0 >
9− 9λ+ 2λ2

13− 15λ+ 4λ2
¡
αS − α

¢
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with

αS =
13− 15λ+ 4λ2

9− 9λ+ 2λ2
.

Hence we arrive at the following stability conditions:

If α < αS , then se is locally stable.

To examine the birth of a period-2 cycle, we define the second iterated
function of ϕ(s) by ϕ(ϕ(s)) and introduces a new function φ(s) = s− ϕ(ϕ(s)).
Figure 13 in which λ = 1.1 illustrates four graphs of φ(s) with α = 0.89,
α = 0.86, α = 0.84 and α = 0.8478. The graphs with the first three values
of α are depicted as solid curves and the one with α = 0.8478 as the bold
curve. The intersections with the horizontal line are the fixed points of ϕ(ϕ(s)).
Since se is the fixed point of ϕ(s), it is also a fixed point of ϕ(ϕ(x)) and all
curves pass through this point. For α = 0.89, the φ(s) curve has a negative
slope at se because αS ' 0.88156 < 0.89 implies the instability of se. It has
an N -shaped curve and its positive sloping parts cross the horizontal line to
give rise to a periodic points of a stable period-2 cycle. For α = 0.86 < αS ,
se is locally stable. The φ(s) curve crosses the horizontal line five times and
thus generates two period-2 cycles, one inner unstable cycle and the other outer
stable cycle. For α = 0.84, se is locally stable but the φ(s) curve intersects the
horizontal line only once at se. This implies that there exist no period-2 cycle.
The threshold value of α∗ ' 0.8478 distinguishes the second case (i.e., emergence
of two periodic cycles) from the third case (no periodic cycle). The φ(s) curve
with α∗ is depicted as bold and touches the positive part of the horizontal line
from above and the negative part from below. In other word, the inner cycle
coincides with the outer cycle. Therefore two distinct periodic cycles emerge for
α > α∗ and no cycle emerges for α < α∗. For α < α∗ the red region disappears
and the initial difference in the policy determines the equilibrium trade policy.
Indeed any trajectory starting at a point with s1(0) > s2(0) converges to the
equilibrium point Eb while any trajectory starting a point with s1(0) < s2(0)
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approaches the equilibrium point Ea.

Figure 13. Emergence of a period-2 cycle

Theorem 7 Suppose that the production costs are identical and the demand
is inelastic. (i) The stationary point is locally unstable and one period-2 cycle
exists for 1 ≥ α ≥ αS; (ii) The stationary point is locally stable and two period-
2 cycles exist for αS > α ≥ α∗; (iii) The stationary point is locally stable and
no periodic cycles exist for α < α∗ where the critical value and the equilibrium
value of the adjustment coefficient are

αS ' 0.8816 and α∗ ' 0.8478 if λ = 1.1.

Since the output dynamics depends on the policy dynamics but not vice
versa, we can be fairly certain that the output dynamics gives rise to a period-2
cycle which is synchronized with the period-2 cycle of trade policy.

4.2 Asymmetric Firms: c1 6= c2
The cost difference does not change the qualitative properties of the dynamics
when the demand is inelastic. The policy space is divided into three parts,
each of which is a basin of attraction of a stationary state if the adjustment
coefficients are close to unity. A period-2 cycle and its basin disappear if the
coefficients become much smaller than unity. The cost difference and the value
of the adjustment coefficient, however, quantitatively affects the shape of the
basin. We fix c1 = 1, λ = 1.1, α1 = α2 = 0.95 and take c2 = 1.05 in Figure
14(A) and c2 = 0.95 in Figure 14(B). We have already examined the effect on
the determination of the optimal trade policy caused by the cost asymmetry
in Figure 7 in which the same values of parameters are taken. It is still true
that the higher-cost firm can enjoys the higher subsidy at point Ea in Figure
14(A) and at point Eb in Figure 14(B). On the other hand, the lower-cost firm
receives the higher subsidy at point Eb in Figure 14(A) and at point Ea in
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Figure 14(B). Comparing Figure 9(A) and Figure 14(A) reveals that the basin
of Ea becomes smaller when the cost of firm 2 is larger and so does the basin of
Eb when the cost of firm 1 is larger. Then it becomes probable that the lower-
cost firm receives higher subsidy as the cost difference becomes larger. It is
also numerically confirmed that the basin of the period-2 cycle disappears when
the adjustment coefficient becomes smaller. Since the best replies of the firms
become complicated with cost difference, it is not easy to reveal analytically the
mechanism that causes disappearance of the period-2 cycle.

(A) c2 = 1.05 (B) c2 = 0.95

Figure14. Distorted basins of attraction with asymmetric firms

5 Concluding Remarks
In this paper we assume that the price function is hyperbolic and construct
a three-country model with two active governments and two firms to consider
dynamic behavior of the sequential subsidy game in which the governments
determine their trade policy and the firms determine their optimal outputs. We
first deal with the determination of the governments’ optimal trade policy that
depends on the actual cost ratio and strategic characteristics of the outputs.
Our dynamic results are summarized as follows:

(1) When the production costs are identical, a trade policy and the correspond-
ing optimal output are stable if the demand is elastic while multistability
(i.e., coexistence of multiple attractors) and complex dynamics of output
occur if the demand is inelastic.

(2) When the production costs are different, a stable trade policy can induce
chaotic output fluctuations regardless of demand elasticity.

(3) When the production costs are different, the trade policy can be chaotic
and so does the output if the demand is elastic while multistability and
chaotic output dynamics occur if the demand is inelastic.
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