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Abstract

We study a Cournot duopoly dynamic model in which reaction functions are
piecewise linear. Such a model typically generates ergodic chaos when it in-
volves strong nonlinearites. To investigate statistical properties, we construct
explicit forms of density functions associated with chaotic trajectories. We
demonstrate that the long-run average behavior possesses regular properties
although each chaotic trajectory exhibits irregular motions. In particular,
the ratios of the average outputs as well as the average profits are the same
as those of Cournot outputs as well as Cournot profits.
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1 Introduction

A Cournot duopoly model describes the output adjustment process in a mar-
ket where a duopolist takes account of not only the behavior of consumers
in terms of the market demand but also the behavior of the rival in terms
of the forecasts of rival’s output. The original model was introduced by Au-
gustin Cournot in 1838 and has since been extended in various directions; see
Puu [2002] for a historical account. The stability of the Cournot dynamics
had been taken for granted for 140 years. However, Rand [1978] has shown
that chaotic fluctuations can arise in the non-linear Cournot model where
reaction functions are unimodal. Since Rand mathematically demonstrated
the existence of chaotic economic dynamics, various modifications have been
carried out by numerous economists. Rosser [2002] has a good review of the
development of the theory of complex oligopoly dynamics since then. A lot
of effort is still being devoted to investigate the dynamic structure of the
nonlinear Cournot model, with recent developments summarized in Puu and
Sushko [2002].
Chaotic dynamics has two salient features: irregularity of trajectory and

extreme sensitivity to the initial conditions. The former implies that as a
trajectory fluctuates erratically, it is difficult to distinguish chaotic behavior
of a deterministic process from truly random behavior of a stochastic process.
The latter implies that even a slightly different choice of initial conditions
can drastically alter the whole future behavior of trajectories. Each chaotic
trajectory moves in such a complicated way that it is difficult to predict
its long-term behavior. Yet, Day and Pianigiani [1991] turn their attention
to the statistical behavior that frequencies of trajectories can converge to a
stable density function which characterize chaotic economic dynamics from
the long-run point of view. Inspired by their results, Huang [1995] raises a
provocative question of whether a complex (i.e., chaotic) dynamics is prefer-
able to simple (i.e., stable) dynamics and provides an affirmative answer
that perpetual fluctuations generated by a cautious cobweb model may be
preferable to a stationary equilibrium. On the other hand, Kopel [1997] con-
structs a simple model of evolutionary dynamics and shows a negative result
that various performance measures such as aggregate profits, aggregate sales
revenues and mean sales indicate the inferiority of chaotic dynamics to equi-
librium on the average. Matsumoto [2003a] shows an equivocal result in a
simple exchange model with two agents and two goods that the long-run aver-
age performance measure taken along a chaotic trajectory is greater than the
corresponding measure calculated at equilibrium for one agent but smaller
for the other agent. Matsumoto [2003b] also considers a piecewise linear map
to investigate qualitative implication of complex dynamics involving chaos.
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It is important to investigate the long-run or statistical properties of chaotic
dynamics so as to understand its economic implications.
So far, multidimensional chaos has been presented in variants of a Cournot

model while the qualitative economic characterization of chaotic dynamics
has been generated using a one dimensional map. So a natural question
which we raise is about the statistical properties of multidimensional chaos.
To answer this question is the purpose of this study. In particular, this study
investigates the long-run average behavior of Cournot chaotic dynamics. To
this end, we construct a piecewise linear duopoly model and derive, analyt-
ically as well as numerically, the long-run average outputs and the long-run
average profits along chaotic trajectories.
This paper is organized as follows. Section 2 outlines a piecewise linear

duopoly model, which allows us to construct an explicit form of density
function of chaotic trajectory and thus to analytically study the statistical
dynamics. Section 3 derives a two-dimensional Cournot adjustment process.
Section 4 reduces the dimension of the dynamical system from two to one
and shows that both system can generate qualitatively the same dynamics.
Section 5, the main part of this study, demonstrates analytically as well as
numerically that statistical dynamics has rather regular properties such that
ratios of the average outputs and the average profits are constant, although
each chaotic trajectory exhibits highly irregular motions. Section 6 provides
conclusions.

2 Duopoly Model

Two possible microeconomic foundations of the unimodal reaction functions
of a nonlinear Cournot model have been provided. One is by Puu [2000] who
shows that linear production technologies and a hyperbolic market demand
may result in unimodal reaction functions. The other is by Kopel [1996]
who makes certain that the different assumptions of linear demand function
and nonlinear cost function involving production externalities also result in
unimodal reaction functions. In this study we follow Kopel’s approach and
construct a Cournot duopoly model with a production externality.
On the demand side, we assume that the inverse demand function is

linear,
p = a− bQ, a > 0 and b > 0, (1)

where Q is the industry demand. On the supply side, we assume that two
firms, denoted by X and Y, produce homogenous outputs x and y. Provided
demand equals supply, Q = x+ y. Each firm forecasts the competitor’s pro-
duction and faces a production externality where the production possibilities
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of one firm are influenced by the production of the other. Although there are
various ways to introduce externalities, we confine our analysis to the case
in which the cost of production depends on not only its own production but
also its rival’s production.
We say that a firm has a positive production externality if the firm’s mar-

ginal cost, for an increment of the rival’s output, is decreasing and a negative
production externality if it is increasing. Forecasting the rival’s output choice,
each firm chooses a profit maximizing output for itself. The reaction function,
thus, describes a functional relationship between the expected output of the
rival and its own optimal choice. Due to the presence of production exter-
nality, the reaction function can be upward- or downward-sloping according
to whether the external effect is positive or negative.
We call a firm imitator if its reaction function is upward-sloping and

accommodator if downward-sloping. The imitator, who imitates the rival’s
behavior, expands or shrinks its own output if its rival expands or shrinks
the rival’s output. The accommodator is a text-book duopolist and adapts
to reduce residual demand if the rival expands output. Further, we call a
firm dualist if it has a dual reaction pattern, that is, if it changes its strategic
profile from the imitator to the accommodator when the rival expands output
beyond a pre-determined critical value.1

In what follows, we focus on the statistical behavior of the imitator and
the dualist. Indeed, we examine the profit-maximizing behavior of, first, the
imitator to derive a monotonic (invertible) reaction function and then, the
behavior of the dualist to derive an asymmetric tent-shaped (i.e., noninvert-
ible) reaction function.

2.1 Invertible Reaction Function

In this subsection, it is shown that in a situation involving a positive pro-
duction externality, the profit-maximizing behavior of a firm is to follow the
rival’s behavior.
We suppose that firm X has a cost function,

ci(y
e)x = {(a− 2bAi)− b(1 + 2αi)ye}x, αi > 0, (2)

where a− 2bAi > 0 is assumed to avoid the negative marginal cost and the
subscript ”i” indicates the imitator. αi > 0 implies that the more the rival
firm is expected to produce, the less the marginal cost will be to produce an

1We follow van Witteloostuijn and van Lier [1990] for the nomenclature, "imitator",
"accommodator" and "dualist".
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additional unit of its own production. The firm X’s profit is a revenue px
minus cost ci(ye)x, which is, after arranging terms, spelled out as

Πi(x, y
e) = {2(Ai + αiy

e)− x}bx. (3)

The condition characterizing profit maximization is the equality between the
marginal revenue and the marginal cost. Solving it for x, we have the reaction
curve of firm X,

ri(y
e) = Ai + αiy

e. (4)

This is a straight line with positive slope αi and an intercept Ai. It implies
that the optimal strategy for firmX is to imitate the rival’s strategy, in other
words, firm X with (2) chooses to be an imitator.
From the profit function, we can also derive the zero-profit line which

describes all combinations of x and ye that yield a zero profit,

zi(y
e) = 2(Ai + αiy

e). (5)

Note that the zero-profit line has the same vertical intercept, −Ai
αi
, as the

reaction curve, but it is half as steep in the x-ye plane. This gives us an easy
way to draw the zero-profit line. We know that the vertical intercept is −Ai

αi
.

To get the horizontal intercept, just take twice of the horizontal intercept
of the reaction function. Drawing the straight line passing through these
two interceptions gives us the zero-profit line. Thus the profit is negative for
those combinations of x and ye located below the zero-profit line. In Figure
1, the reaction curve (actually the bold straight line) is illustrated to pass
through the lowest point of each U-shaped isoprofit curve, and all of the
bundles, (x, ye), in the shaded area underneath the zero-profit line generate
negative profits.
The cross-partial derivative of the imitator’s marginal profit with respect

to its rival’s output is
∂

∂y
(
∂Πi
∂x
) = 2αi > 0. (6)

Due to the presence of positive production externality, the imitator’s mar-
ginal cost decreases as the rival increases its output so that it is preferable for
the imitator to follow its rival’s behavior. According to Bulow et al. [1985],
this indicates that the imitator treats its own product as a strategic com-
plement to the rival’s output under the condition of a positive production
externality.
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Figure 1. Upward sloping reaction and zero-profit curves.

2.2 Noninvertible Reaction Function

In this section, we consider a circumstance in which a firm can have an
asymmetric reaction pattern. We assume that firm Y , which produces y and
forecasts xe, has a piecewise production cost function specified as

Cd(x
e, y) =Max[cid(x

e)y, cad(x
e)y], (7)

where

cid(x
e)y = {(a− 2bA)− b(1 + 2α)xe}y,

cad(x
e)y = {(a− 2bB)− b(1− 2β)xe}y.

Here the subscript ”d” indicates the dualist. Depending on the scale of the
rival’s output, the dualist imitates as well as accommodates its rival.2 Since
α > 0 and β > 0 are assumed, the marginal cost, cd(xe), takes on a V -shaped
profile which accounts for asymmetric externality.
The profit is also piecewise linear,

Πd(x
e, y) =Min[Πid(x

e, y),Πad(x
e, y)], (8)

2Kopel [1996] takes the book-buying-habit hypothesis to justify the dual reaction pat-
tern.
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where

Πid(x
e, y) = {2(A+ αxe)− y}by,

Πad(x
e, y) = {2(B − βxe)− y}by.

Given xe, firm Y would maximize Πid(x
e, y) with respect to y for 0 < y < y0

and Πad(x
e, y) for y0 < y where y0 solves Πid(x

e, y) = Πad(x
e, y), given xe.

Equating each partial derivative to zero, we can solve each for the reaction
curve,

rd(x
e) =Min[A+ αxe, B − βxe]. (9)

Firm Y shows an asymmetric reaction pattern and its reaction curve is asym-
metric tent-shaped. Firm Y with (7) chooses to be a dualist. rd(xe) is a map
from [0, B

β
] into [0, αB+βA

α+β
]. For convenience, we reduce the reaction function

to that of the special class by making the following assumptions.

Assumption 1. A =
α+ β − αβ

β
and B = β where α > 0 and β > 0.

Due to Assumption 1, the reaction function can be written in a simple
form with two parameters,

rd(x
e) =Min[rid(x

e), rad(x
e)], (10)

where

rid(x
e) = αxe +

α+ β − αβ

β
for 0 ≤ xe ≤ x0,

rad(x
e) = β(1− xe) for x0 ≤ xe ≤ 1.

where x0 = 1 − 1
β
is the turning point of the reaction function and solves

rid(x) = r
a
d(x). For α+ β − αβ ≥ 0, rd(xe) maps the unit interval into itself.

For α + β − αβ < 0, it should be restricted to I 0 = [−A
α
, 1] because outside

this range, the implied output would be negative, which is inadmissible.
Alternatively, define rd(x) ≡ 0 for all x ∈ R\I 0 then rd(x) is extended to all
positive real line.
From the definition of the profit, the zero-profit curves are also derived

as

zid(x
e) = 2(

α+ β − αβ

β
+ αxe) for 0 ≤ xe ≤ x0,

zad(x
e) = 2β(1− xe) for x0 ≤ xe ≤ 1.
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A reaction curve as well as the zero-profit curve are illustrated in Figure 2 in
which profits are negative for all the bundle (xe, y) in the shaded areas. It can
be seen that the dualist chooses the output level associated with the isoprofit
line furthest to the right for 0 ≤ xe ≤ x0 and to the left for x0 ≤ xe ≤ 1.

x0
x

y

Pd
a<0Pd

i<0

rd
aHxeLrd

iHxeL
zd

aHxeLzd
iHxeL

Figure 2. Piecewise linear reaction and zero-profit curves.

Returning to the cost function, it can be seen that marginal cost curve is
V -shaped due to the presence of positive-negative production externality. It
has a minimum at the turning point x0 and is strictly decreasing on [0, x0]
and strictly increasing on [x0, 1]. Since the minimummarginal cost is attained
for x0,

rid(x0) = r
a
d(x0) = y{ b

β
+ (a− 3b)}, (11)

which is non-negative if a ≥ 3b holds. In the following, we make a stronger
assumption and set a = 3b for convenience.
The cross-partial derivatives of firm Y ’s marginal profits with respect to

its rival’s output are

∂

∂x
(
∂Πid
∂y
) = 2α > 0 for 0 ≤ x ≤ x0,

∂

∂x
(
∂Πad
∂y
) = −2β < 0 for x0 ≤ x ≤ 1.

According to Bulow et al. [1985] these inequality conditions indicate that
firm Y treats its own product as a strategic complement to the rival’s output
when the rival produces its output at less than the critical level, x0, and as
a strategic substitute when at greater than x0.
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3 Adjustment Process

We are interested in studying dynamic interactions between two firms. Since
each of the two duopolist firms can be an imitator or dualist, depending on
what production externality arises, there are four different duopoly markets.
When both firms are imitators, the resultant dynamics are relatively simple
as the reaction functions are monotonic. So we omit those simple case from
further considerations. When both firms are dualists, the resultant dynamics
is too complicated to yield analytical results and thus will be considered in
a future study, based on the results obtained in this study.3 So in this study
we will limit ourselves to a market in which firm X is an imitator and firm
Y is a dualist.
To consider the dynamic adjustment process of output, we lag the vari-

ables. Under the assumption of the naive expectation formation (i.e., xet =
xt−1 and yet = yt−1), a dynamics process is obtained by the iteration of the
following two dimensional system,

T (xt, yt) = (ri(yt), rd(xt)) (12)

where
ri(yt) = Ai + αiyt,

rd(xt) =Min[αxt +
α+ β − αβ

β
,β(1− xt)].

Since the parameter Ai, which shifts the imitator’s reaction function, does
not affect the dynamical properties, we take it to be zero for the sake of
analytical simplicity,

Assumption 2. Ai = 0.

A stationary state of this system is an intersection of the reaction func-
tions of X and Y , and we call it the Cournot point. Due to the tent-shaped
profile of dualist’s reaction function, multiple Cournot points possibly exist
if αiα > 1. The left panel of Figure 3 below depicts the case in which there
exist two Cournot points, denoted as C and C 0, such that r−1

i (xt) = r
i
d(xt)

and r−1
i (xt) = r

a
d(xt). These points are, respectively, derived as

xc =
αiβ

1 + αiβ
and yc =

β

1 + αiβ
. (13)

3There are many studies on nonlinear duopoly as well as triopoly dynamics in which
firms have unimodal reaction functions. See, for example, Puu and Sushko [2002] for a
survey of recent contributions.
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and

xc
0
=

αi(αβ − α− β)

β(αiα− 1) and yc0 =
(αβ − α− β)

β(αiα− 1) , (14)

where αβ − α− β > 0 is necessary for a positive bundle of (xc
0
, yc

0
).

Since the adjustment process is piecewise linear, the local stability of
Cournot point occurs when the product of the slopes of the reaction functions
is less than unity in absolute value,

| dri(y)
dy

drd(x)

dx
|< 1. (15)

The product at (xc
0
, yc

0
) is αiα and the existence condition is αiα > 1, which

makes this point locally unstable. Trajectories starting in the neighborhood
of (xc

0
, yc

0
) monotonically diverges away from it. On the contrary, dynamics

in the neighborhood of (xc, yc)displays a more complex behavior. Since the
product is αiβ at (xc, yc), the Cournot point is locally stable or unstable
according to αiβ is less or greater than unity. Even if the point is unsta-
ble, dynamics around (xc, yc) is rich as the tent-shaped profile of dualist’s
reaction curve prevents unbounded output oscillations. Indeed, the dynam-
ics has a wide spectrum ranging from periodic cycles to chaos and thus the
Cournot point is globally stable in the sense that the trajectories stay in a
bounded region. In this study, we are interested in statistical properties of
chaotic fluctuations around (xc, yc), and thus we assume local instability of
the Cournot point,

Assumption 3. αiβ > 1.

We confine our analysis to a Markov Perfect Equilibrium (MPE) trajec-
tory, along which the dynamic process proceeds as follows. At the beginning
of a period, a duopolist expects that its rival is going to continue to keep
its output at the level produced in the previous period and would want to
choose the profit maximizing output given that expectation. At the begin-
ning of the next period, the rival duopolist can reason the same way, and
then the process repeats. Graphically, a MPE trajectory visits two reaction
curves alternately as illustrated in the right panel of Figure 3. Each firm can
maximize its profit on its own reaction curve but cannot on its rival’s reaction
curve. In consequence, it is probable that the profit taken at a point on the
rival’s reaction curve may be negative under some circumstance. However,
negative profit will generate unfavorable outcome. Since it is always possible
to produce a zero level of output, a rational firm, as described in any elemen-
tary text book on microeconomics, prefers the choice of doing nothing than

9



producing something to earn negative profit. It is, further, possible that the
firm, forecasting its rival producing nothing, prefers to produce nothing at
the next period when the optimal choice is in the shaded region. Then no
economic activities are carried out anymore.
To avoid the occurrence of negative profit, we restrict the choice of para-

meters. The left panel of Figure 3 superimposes Figure 1 on Figure 2 for α =
2β

2β−3
and β = 2. It depicts an illustrative example in which profits can be

non-negative if the initial point is selected appropriately. The shaded area
indicates that profits of either or both duopolists are negative for bundles
in that area. The right panel of Figure 3 is an enlargement of the reaction
curves restricted to [xm, xM ] × [ym, yM ] in the left of Figure 3. In this en-
larged diagram, parameters are selected so as to make the restricted reaction
function of the dualist have a tent-shape profile.4 Point C is unstable due to
Assumption 3 and a trajectory starting near it gradually moves away from
it but the upper bound makes it bounce back to a neighborhood of Point C,
and then moves away again as illustrated. The trajectory keeps moving up
and down chaotically but stays in the restricted area. As can be seen clearly,
there is no shaded area in the right panel, which means that the profits are
non-negative if a trajectory stays within this area. We investigate how to
find the critical values, xm, xM , ym and yM .

0 xm xM 1
x

ym

yM
y

C

C'

xm xc xM
xym

yc

yM
y

C

Figure 3. Restricted map (left panel) and its enlargement

We detrmine the parameter sets for which the following three condi-
tions are simultaneously satisfied; (1) the imitator’s reaction curve, x =

4Note that the upward sloping line passing through point C is not the diagonal but
the imitator’s reaction function. The aspect ratio of the horizontal and vertical axes is
adjusted to be 1 to 1.
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ri(y), crosses the dualist’s negative sloping zero-profit curve, y = zad(x), at
(xM , yM); (2) the imitator’s zero-profit curve, x = zi(y), crosses the dualist’s
negative sloping reaction curve, y = rad(x), at (xM , ym); (3) r

a
d(xm) ≥ ym.

Condition (1) concerns a non-negative profit condition for a dualist. The
zero-profit curve, y = zad(x), intersects the y = 1 locus at xd ≡ 1− 1

2β
while

the imitator’s reaction curve, y = ri(x), intersects the y = 1 locus at xi ≡ αi.
Thus if the inequality condition,

xi ≤ xd (16)

holds, then for x ≥ xm the imitator’s reaction curve is not located in an area
in which dualist’s profit is negative, Πad < 0.
Condition (2) is a non-negative profit condition for an imitator. Under

Assumption 2, the positive-sloping zero-profit curve of the imitator starts at
the origin and takes a positive value for x = 1 while the downward-sloping
reaction curve of the dualist passes through point (1, 0). Therefore, these two
curves must cross each other and, in consequence, some part of the dualist’s
reaction curve, y = rad(x), is inevitably located in a region in which the
imitator’s profit is negative. To prevent Πi from being negative, we need to
ensure that a MPE trajectory does not enter the region of Πi(x) < 0. Solving
x = zi(y) and y = rad(x) simultaneously for x gives the point at which tthe
wo curves intersect. We denote it by xid =

2αiβ
1+2αiβ

. The imitator’s profit
is negative on the dualist’s reaction curve for x > xid. If the maximum
output of the imitator can be designed to be not greater than xid, then the
maximum output along a MPE trajectory is less than or equal to xid so that
the imitator’s profit can be non-negative along such aMPE trajectory. Denote
the maximum output of the dualist by yM , which is unity. For a given yM ,
the maximum output of the imitator is xi. Then we have

xid − xi = 2αiβ

1 + 2αiβ
(xd − xi) (17)

which is non-negative if xd ≥ xi. As seen above, this is the condition for
which the dualist’s profit is positive on the imitator’s reaction curve. The
same condition works to prevent the imitator’s profit from being negative.
For the sake of analytical simplicity, we assume xd = xi which is equivalent
to

Assumption 4. αi = 1− 1

2β
.

Condition (3) is imposed to eliminate the Cournot point of (xc
0
, yc

0
) from

the restricted area. If it is in the restricted area, a trajectory sooner or later
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escapes from the area as the point is unstable and then enters the shaded
area in which profits are negative. Let ym denote dualist’s optimal output
when its expectation is xe = xi. Since rad(x) is negative-sloping, ym = r

a
d(xM)

is the least output for the dualist corresponding to the largest output of the
imitator. Further, let xm denote imitator’s optimal output when an expected
output of the rival is ye = ym, so that xm = ri(ym). Finally if rid(xm) ≥ ym
holds, then the minimum output set along a MPE trajectory is the greater of
(xm, ym) so that such a MPE trajectory never enters an area in which Πi < 0
or Πid < 0. Under Assumption 4, r

i
d(xm) ≥ ym holds if

3α+ 2β − 2αβ ≥ 0 or α < 2β

2β − 3 . (18)

If we setxM = 1 − 1
2β
(i.e., xM = xd = xi), then we can determine, in

addition to yM = 1, other critical values as follows

xm =
1

2
(1− 1

2β
) and ym =

1

2
. (19)

Since we use these critical values in the latter analysis, we formally define
them.

Assumption 5. xM = 1− 1
2β
, xm =

1
2
xM , yM = 1 and ym = 1

2
yM .

The instablility condition, αiβ > 1, is transformed to β > 3
2
under As-

sumption 4. We summarize these results as follows.

Theorem 1 Suppose Assumptions 1, 2, 3, 4 and 5 hold. Then, for (α,β)
such as that 3α + 2β − 2αβ ≥ 0 and β > 3

2
, a MPE trajectory of T (xt, yt)

starting at an initial point (x0, y0) selected in such a way that xm < x0 < xM
and y0 = rd(x0) stays within a restricted area [xm, xM ] × [ym, yM ] and thus
profits of dualist and imitator are non-negative along such a MPE trajectory.

4 Reduction of Dynamical System

The evolution of output is described by the two-dimensional dynamical sys-
tem, T (xt, yt) = (ri(yt), rd(xt)). By Assumption 4, the Cournot point is
unstable and thus a trajectory generated by the system neither converges
nor diverges but keeps oscillating within a bounded region. Typical dynam-
ics generated by T is chaos. One way to characterize such dynamics is to
consider its long-run average (statistical) behavior. In this section, we reduce
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the dimensionality of the dynamical system from two to one and investigate
certain properties of the resulting complex output dynamics.
A MPE trajectory of output is given by iterating T (xt, yt) with an initial

point which lies on either of the reaction curves. Since each firm moves
alternately, their optimal movements are described by iterating the composite
maps of reactions functions. Let

F (x) = ri ◦ rd(x) and G(y) = rd ◦ ri(y). (20)

Each composite map advances two periods from period t to period t + 2.
Thus the evolution of the dualist is given by

yt+2 = G(yt) : Iy → Iy, (21)

where Iy = [ym, yM ] is the trapping interval and

G(yt) =Min[αiαyt +
α+ β − αβ

β
,β(1− αiyt)]. (22)

G(y) is tent-shaped and has a turning point, y0 =
1
αi
(1 − 1

β
). Similarly, the

evolution of the imitator is given by

xt+2 = F (xt) : Ix → Ix, (23)

where Ix = [xm, xM ] is the trapping interval and

F (xt) =Min[αiαxt + αi
α+ β − αβ

β
,αiβ(1− xt)]. (24)

F (x) is also tent-shaped and has a turning point x0 = 1− 1
β
where x0 = αiy0

holds.
As considered in Bischi, et al. [2000], dynamics generated by T (x, y) is

strongly related to dynamics of F (x) and G(y). Further, since the imitator’s
reaction function is invertible, two one-dimensional maps, F (x) andG(y), are
dynamically equivalent in the sense that they share the same stability prop-
erties, that is, if one gives rise stable dynamics, periodic cycles or complex
dynamics, then so does the other. Hence, to understand dynamical properties
of the two-dimensional map T (x, y), it suffices to study dynamic properties of
one of these one-dimensional maps. Both maps are single-peaked piecewise
linear and have a turning point that divides the trapping interval into two
subintervals. Maps are increasing on one subinterval and decreasing on the
other. So the considerations of these two maps can be reduced to that of a
single piecewise linear map with two parameters defined by

fα̃,β̃(u) =Min[α̃u+
α̃+ β̃ − α̃β̃

β̃
, β̃(1− u)] : [0, 1]→ [0, 1], (25)
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where α̃ = αiα and β̃ = αiβ. We study the dynamical properties of F (x)
and G(y) through the investigations of fα̃,β̃(u).
Since F (x) as well as G(y) have a unique and unstable stationary state

under Assumption 3 and 5, fα̃,β̃(u) should possess the same properties. To
ensure this, we restrict combinations of parameters of fα̃,β̃(u) to the following
set, D,

D = {(α̃, β̃) | α̃ > 0, β̃ > 1, α̃β̃ > 1 and α̃+ β̃ > α̃β̃}. (26)

A fixed point of fα̃,β̃ is uE =
β̃

β̃+1
which is stable for β̃ < 1. fα̃,β̃ is reduced to

1− u and generates a period-two cycle for all initial points if β̃ = 1. A fixed
point of the second iterate that differs from uE is identified with a periodic
point with period two and is shown to be stable if α̃β̃ < 1. It is also verified
that fα̃,β̃ generates a stable periodic cycle with period four if α̃β̃ = 1. Hence
we assume β̃ > 1 and α̃β̃ > 1 to omit those stable dynamics and, further,
assume α̃ + β̃ − α̃β̃ > 0 in order to eliminate multiple equilibria. Summing
up, we see that for (α̃, β̃) ∈ D, fα̃,β̃(u) is continuous, maps the unit interval
into itself, takes the extremum at the maximizer u0 =

β̃−1

β̃
, is increasing

on [0, u0], decreasing on [u0, 1], and has a unique unstable fixed point. The
following theorem confirms that dynamics generated by F (x) as well as G(y)
are essentially the same as the one generated by fα̃,β̃(u).

Theorem 2 F (x) as well as G(y) are linearly conjugate to fα̃,β̃(u).

Proof. We start with F (x). ϕ(x) = x−xm
xM−xm can be a linear isomorphism

from [xm, xM ] onto the unit interval, [0, 1], such that ϕ◦F ◦ϕ−1(u) = fα̃,β̃(u)
which implies that F (x) is conjugate to fα̃,β̃(u). With G(y), we can also
demonstrate that ψ(y) = y−ym

yM−ym is a linear isomorphism from [xm, xM ] onto
the unit interval such that ψ ◦ F ◦ ψ−1(u) = fα̃,β̃(u).

For any pair of parameters in D, the typical dynamics of fα̃,β̃ is ergodic
chaos. If densities of chaotic trajectories could be constructed, it may be
possible to capture statistical properties of such chaotic dynamics. Lasota
and Yorke [1973] assure that an expansive map such as fα̃,β̃ has a stable
density function for ergodic chaotic fluctuations,5 but do not say anything
about its closed form. Although it is difficult to construct densities for general
transformation maps, it is possible for some specific maps. In particular,
Boyarsky and Scarowsky [1979] present a simple way to construct a closed-
form expression for a stepwise density if a map is piecewise linear, continuous

5A map is expansive if its slope in absolute value is greater than unity.

14



and Markov.6 Here, fα̃,β̃(u) is Markov if it has either a periodic point or an
eventually-fixed point.7

According to their theorem, the following procedure is appropriate for
constructing a density function which fα̃,β̃(u) permits.

(I) Find a parametric condition for which fα̃,β̃ possesses an eventually-fixed
point or a periodic point with finite period.

(II) Divide the unit interval into subintervals by the points of the corre-
sponding periodic cycle.

(III) Construct a matrix M = (mij) whose entries are defined by

mij =|
dfα̃,β̃(u)

du
|−1 δij.

dfα̃,β̃(u)

dx
is the slope of fα̃,β̃(u) on Ij where Ij is a subinterval of the unit

interval, and δij = 1 if Ij ⊂ fα̃,β̃(Ij) and zero otherwise.

(IV) Solve the matrix equation ΦM = Φ where Φ = (Φi) ∈ RN−1 and N is
the number of period of a periodic cycle.

(V) Since the ingegral of the density function over the trapping interval
must be unity, elements of solution Φi satisfying

PN−1
i=1 ΦikIik = 1

are constant steps of a unique, absolutely continuous, invariant density
function where kIik is the length of subinterval Ii.

Following each step of the above procedure, we give an illustrative exam-
ple for constructing an explicit form of a density function in a case where
fα̃,β̃(u) generates a period-3 cycle.

(I) Solving f3
α̃,β̃
(0) = 0 for α yields the period-3 condition,

α =
4β

(2β − 3)(2β − 1) , (27)

for which the set {0, fα̃,β̃(0), f2
α̃,β̃
(0)} is a period-3 cycle.

(II) By Theorem 2, F (x) gives rise to a period-3 cycle, {xm, x0, xM} under
the same combination of (α,β). The periodic points of F (x) divide Ix
into two subintervals, I1

x = [xm, x0) and I2
x = [x0, xM ].

6See Theorem 3 of Boyarsky and Scarowsky[1979].
7See Matsumoto [2003b] that clarifies combinations of (α,β) for which fα̃,β̃ is Markov.
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(III) Since F (I1
x) = I2

x and F (I2
x) = I1

x ∪ I2
x and the slope of F (x) is

F 0(x) = α̃ on I1
x and F

0(x) = β̃ on I2
x, the matrix M is defined by

M =

µ
0 1

α̃
1
β̃

1
β̃

¶
. (28)

(IV) Solving zM = z where z = (z1, z2) gives the solution, z2 = β̃z1.

(V) To determine the value of z1, we solve z1 k I1
x k + β̃1z1 k I2

x k= 1 for z1

where k I1
x k= x0 − xm and k I2

x k= xM − x0 and obtain the solution

z1 =
β

β − 1 .

Therefore, in the period-3 case, the explicit form of the unique, invariant
density that F (x) possesses is given by Φ = (Φ1,Φ2) where

Φ1 =
β

β − 1 on I1
x = [xm, x0),

Φ2 =
β(2β − 1)
2(β − 1) on I2

x = [x0, xM ].

(29)

We also find that G(y) gives rise to a period-3 cycle, {ym, y0, yM}, which
divides Iy into I1

y = [ym, y0) and I2
y = [y0, yM ]. Thus, by the same procedure,

we can construct the explicit form of density, Ψ = (Ψ1,Ψ2), for a chaotic
trajectory of y such that

Ψ1 =
2β − 1
2(β − 1) on I1

y = [ym, y0),

Ψ2 =
(2β − 1)2
4(β − 1) on I2

y = [y0, yM ].

(30)

From (29) and (30), it can be checked that a step of the density of G(y) is
αi times the step of the density of F (x), i.e. smaller,

Ψk = αiΦ
k for k = 1, 2. (31)

where αi = 1− 1
2β
by Assumption 4.

This relationship connecting two densities generally holds regardless of
the number of period whenever F (x) and G(y) are Markov. To see this,
suppose that F (x) generates a periodic cycle with period N . Then there
exist N points, {ξk}k=1,2,..N in interval Ix = [xm, xM ] such that ξ1 = xm <
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ξ2 < · · · < ξN−1 < ξN = xM . These points divide Ix into N − 1 mutually
disjoint subintervals, Ikx = [ξk, ξk+1), k = 1, 2, ...N−2 and IN−1

x = [ξN−1, ξN ].
The step function has a step Φk on each Ikx which satisfies

N−1X
k=1

ΦkkIkxk = 1, (32)

where kIkxk = ξκ+1−ξk. SinceG(y) is conjugate to F (x), G(y) also possesses a
period N cycle with periodic points {θk}k=1,2,..N in the interval Iy = [ym, yM ].
By the same principle, G(y) has a stepwise function with step Ψk on each
subinterval Iky = [θk, θk+1] such that

N−1X
k=1

ΨkkIky k = 1. (33)

By Assumption 5, xm = αiym and xM = αiyM , and it is also clear that
ξk = αiθk holds for all k. Then we have Ikx = αiI

k
y . Subtracting (33) from

(32) gives

N−1X
k=1

ΦkkIkxk−
N−1X
k=1

ΨkkIky k =
N−1X
k=1

{Φkαi −Ψk}kIky k (34)

which must be zero. Therefore we have αiΦk = Ψk in the period-N case. We
summarize this result as follows.

Theorem 3 Let Φ = (Φk) and Ψ = (Ψk) for k = 1, 2, ...N − 1 be stepwise
densities that F (x) and G(y) possess. Then αiΦ

k = Ψk for k = 1, 2, ...N − 1.

5 Statistical Dynamics

5.1 Cournot Point

As the reference point of the long-run average behavior, we calculate the
Cournot outputs and the Cournot profits, the profits obtained at the Cournot
point. The Cournot point (13) under Assumption 4 is reduced to

xc =
2β − 1
2β + 1

and yc =
2β

2β + 1
. (35)

Substituting these outputs into Πi in (3) and Πd in (8) gives the Cournot
profits of the imitator and dualist, respectively

Πcd = b

µ
2β

2β + 1

¶2

and Πci = b

µ
2β − 1
2β + 1

¶2

, (36)
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where the superscript ”c” means that the profit is evaluated at the Cournot
point. We observe through (35) and (36) that Cournot outputs increase with
β and so do Cournot profits. Further, we can verify that the ratio of xc over
yc and the ratio of Πci over Π

c
d also increase with β,

xc

yc
=
2β − 1
2β

< 1 and
Πci
Πcd

=

µ
2β − 1
2β

¶2

< 1. (37)

Inequalities of (37) indicate that the dualist produces more output and earns
more profit than the imitator for any feasible β > 3

2
at the Cournot point.

By Assumption 4, we have 2β−1
2β

= αi where αi is the inverse of the slope
of the imitator’s reaction function. Given β, the constant output ratio is an
alternative expression of the fact that the Cournot point is located on the
imitator’s reaction curve.8 From (37), we also see that the profit ratio is
equal to the square of the output ratio. These facts can be summarized as:

Theorem 4 At the Cournot point, an imitator produces output αi times less
than dualist’s output and earns profit α2

i times smaller than dualist’s profit,

xc = αiy
c and Πci = α2

iΠ
c
d,

where αi =
2β − 1
2β

< 1 for all positive values of β and in particular for

β >
3

2
.

5.2 Markov Trajectory

Once a periodic cycle is found, we can construct an explicit form of density
function and thus look for statistical characteristic of chaotic dynamics such
as the long-run averages of output and profit with the help of the following
Birkhoff-von Neuman mean ergodic theorem.9

Theorem 5 If a dynamical system of x is chaotic ergodic, then the time
average of a function g(x) associated with a chaotic trajectory, {xt}, equals
to its space average, that is,

lim
T→∞

1

T

T−1X
t=0

g(xt) =

Z
I

g(x)φ(x)dx

where g ∈ C1, φ(x) is a density function and I is its support.

8As the Cournot point is the intersection of two reaction functions, it is also possible to
show that the Cournot point is on the dualist’s reaction function, that is, yc = β(1− xc).

9See, for example, Day[1994, Theorem 8.2 on p.142] for this theorem.

18



5.2.1 Long-run Average Output

According to the mean ergodic theorem, the time average output of x taken
along a chaotic trajectory is given by

x̄ =

Z xM

xm

xΦdx. (38)

Similarly, the time average output of y is

ȳ =

Z yM

ym

yΨdy. (39)

Since F (x) and G(y) are conjugate, we can presume a certain connection
between those long-run averages of x and y. Making the change of variable,
x = αiy, we can find the connection such that the average output of x is
equal to αi times the average output of y,

x̄ =

Z xM/αi

xm/αi

αiyΦ(αidy)

= αiȳ,

where xm/αi = ym, xM/αi = ym, and Ψ = αiΦ by Theorem 3. We state this
as our first result on the long-run average behavior.

Theorem 6 The ratio of the average outputs is equal to the ratio of the
Cournot outputs,

x̄

ȳ
=
xc

yc
= αi.

From Theorem 6, we also have xc− x̄ = αi(y
c− ȳ), that is, the ratio of the

differences between the Cournot outputs and the average outputs is equal to
αi. A chaotic trajectory of output oscillates around the Cournot point, in
other words, firms produce less than the Cournot output in some periods
and more in other periods. So our next concern is about whether the average
output is less than the Cournot output or more.
We examine two special but simple cases; the tent-map case where F (x)

as well as G(y) are the tent maps and the period-3 case where F (x) as well
as G(y) generate a period-3 cycle.

Tent-map Case
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Since fα̃,β̃ becomes the tent map if its vertical intercept is zero, we solve
fα̃,β̃(0) = 0 for α to find the tent-map condition,

α =
2β

2β − 3 . (40)

It is well known that the tent map has the uniform density.10 Since F (x) and
G(y) are conjugate to fα̃,β̃ by Theorem 2, they also have uniform density on
their trapping intervals,

ΦT =
2

αi
on Ix = [xm, xM ],

ΨT = 2 on Iy = [ym, yM ],

(41)

where the superscript ”T” denotes the tent-map case. Then the long-run
average outputs of x and y can be calculated as

x̄T =

Z xM

xm

xΦTdx =
3

4
(1− 1

2β
),

ȳT =

Z yM

ym

yΨTdx =
3

4
,

(42)

where x̄T = αiȳ
T holds. From (35) and (42), differences between the Cournot

outputs and the average outputs are also calculated as,

xc − x̄T = (2β − 1)(2β − 3)
8β(1 + 2β)

> 0,

yc − ȳT = 2β − 3
3(1 + 2β)

> 0.

(43)

where xc−x̄T = αi(y
c−ȳT ) also holds. We observe that the Cournot output is

larger than the long-run average output, although the ratio of the differences
is constant (i.e., xc − x̄T = αi(y

c − ȳT )). In consequence, the Cournot total
output, Qc = xc+yc, is larger than the average total output, Q̄ = x̄+ȳ, which
in turn implies that the Cournot price pc is higher than the average price p̄
where each price is determined through the demand function, pc = a − bQc
and p̄ = a− bQ̄.
10See, for example, Section 8.6.1 of Day [1994].
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Since the density is uniform in the tent-map case, it is possible to show
in another way why this result holds. Indeed the difference is written as

xc − x̄T =
Z xc

xm

(xc − x)| {z }
(+)

ΦTdx+

Z xM

xc

(xc − x)| {z }
(−)

ΦTdx, (44)

where xm < xc < xM implies that xc−x > 0 for xm < x < xc and xc−x < 0
for xc < x < xM as indicated. Further, given the tent-map condition, (40),
we have

xM − xc
xc − xm =

2

2β − 1 < 1, (45)

where the direction of the last inequality is due to the instablility condition,
β > 3

2
. Thus, for any feasible value of β, the first term of (44) dominates

the second term so that the total sum becomes positive, that is, the Cournot
output is larger than the average output. The same reasoning applies to
yc > ȳ.

Period-3 Case

Under (27), we have the period-3 case where (29) and (30) are densities.
Thus the long-run average of output x is

x̄3 =

Z x0

xm

xΦ1dx+

Z xM

x0

xΦ2dx

=
21− 48β + 28β2

32β(β − 1) ,

and the long-run average of output y is

ȳ3 =

Z y0

ym

yΨ1dy +

Z yM

y0

yΨ2dy

=
21− 48β + 28β2

16(2β − 1)(β − 1) ,

where the superscript ”3” denotes the period-3 case. It can be checked that
the ratio of average outputs is constant, x̄3 = αiȳ

3. The differences between
the Cournot outputs and the average outputs are calculated as

xc − x̄3 =
−21 + 38β − 28β2 + 8β3

32β(β − 1)(2β + 1) > 0,

yc − ȳ3 =
−21 + 38β − 28β2 + 8β3

16(β − 1)(2β − 1)(2β + 1) > 0,
(46)
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where, again, the constant ratio of the differences is observed, xc − x̄3 =
αi(y

c − ȳ3). Equation (46) indicates that we have the same results in the
period-3 case as in the tent-map case, that is, the Cournot outputs are larger
than the average outputs, and the Cournot price is higher than the average
price. It is possible to show, using mathematical induction, that the same
results hold in any case where the density is explicitly constructed. Summa-
rizing these results gives the following,

Theorem 7 If F (x) and G(y) are Markov, then the Cournot outputs are
larger than the average outputs and are sold at the lower price on the average,

(1) xc > x̄ and yc > ȳ,

(2) pc < p̄.

5.2.2 Long-run Average Profit

We now consider the long-run average profits. Since the MPE trajectory vis-
its the imitator’s reaction curve and the dualist’s reaction curve alternately,
the average profit taken along the MPE trajectory is the sum of the average
profits taken on each reaction curve. If, for instance, a trajectory starts on
the dualist’s reaction curve, then it is on the dualist’s reaction curve at every
odd period and on the imitator’s reaction function at every even period. Sup-
pose M = 2N where TM(x, y) = {FN(x), GN(y)}, 11 and Π denotes a profit
function, then the average Π over M periods is

1

M

MX
t=1

Π(xt, yt) =
1

2N
{[Π(x1, y1) +Π(x3, y3) + ...+ Π(xM−1, yM−1)]

+[(Π(x2, y2) +Π(x4, y4) + ...+Π(xM , yM)]}

=
1

2

(
1

N

NX
t=1

Π(x2t−1, rd(x2t−1)) +
1

N

NX
t=1

Π(x2t, r
−1
i (x2t))

)

=
1

2

(
1

N

NX
t=1

Π(ri(y2t−1), y2t−1) +
1

N

NX
t=1

Π(r−1
d (y2t), y2t)

)

The second and thrid equations imply that the average profit can be defined
in terms of x as well as y.

11See Dana and Montrucchio [1986] and Bischi et al. [2000].
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Transformation from the first to the second equality is carried out in the
following way. Since the trajectory is on the dualist’s reaction curve at odd
periods, the dualist’s output at period 2t−1 is the best reply to the imitator’s
action at period 2(t − 1), y2t−1 = rd(x2(t−1)). When the dualist moves, the
imitator does not move so that the imitator’s output at period 2t−1 is equal
to the one in the previous period, x2t−1 = x2(t−1). Therefore y2t−1 = rd(x2t−1)
and the profit at period 2t− 1 is written as Π(x2t−1, rd(x2t−1)). By the same
reasoning, when the trajectory is on the imitator’s reaction curve at even
period 2t, the profit can be written as Π(x2t, r

−1
i (x2t)). Therefore as shown

above, the average profit over M periods is the average of the sum of the
average profit taken along each reaction curve. The same reasoning applies
to the transformation from the first equality to the third.
When the MPE trajectory is chaotic, the average profit is the limiting

value of the finite average,

lim
M→∞

1

M

MX
t=1

Π(xt, yt) =
1

2
{ lim
N→∞

1

N

NX
t=1

Π(x2t−1, rd(x2t−1))

+ lim
N→∞

1

N

NX
t=1

Π(x2t, r
−1
i (x2t))}.

Since the adjustment process is ergodic, the mean ergodic theorem implies
that the time average of ergodic trajectory converges to its space average,

lim
N→∞

1

N

PN
t=1 Π(x2t−1, rd(x2t−1)) =

Z xM

xm

Π(x, rd(x))Φdx,

lim
N→∞

1

N

PN
t=1 Π(x2t, r

−1
i (x2t)) =

Z xM

xm

Π(x, r−1
i (x))Φdx,

(47)

where Φ(x) is the invariant density function. Summing up our findings, we
have

Theorem 8 For the profit function Π of (x, y), the average profit taken along
the MPE trajectories equals to the average of the sum of the average profits
taken along each reaction function,

lim
M→∞

1

M

MX
t=1

Π(xt, yt) =
1

2
(Π̄i + Π̄d)

where Π̄i is the average profit taken along the imitator’s reaction curve and
Π̄d is the average profit taken along the dualist’s reaction curve.
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In Theorem 4, the ratio of the Cournot profits is constant, namely α2
i .

Applying Theorem 8, we can demonstrate the following result concerning the
ratio of the average profits.

Theorem 9 The ratio of the imitator’s profit to the dualist’s profit, and the
ratio of the imitator’s difference between the Cournot profit and the average
profit to the dualist’s difference are equal to the ratio of the imitator’s Cournot
profit to the dualist’s Cournot profit,

Π̄i
Π̄d

=
Πci − Π̄i
Πcd − Π̄d

=
Πci
Πcd

= α2
i

Proof. See Appendix.
Numerical examples give an answer to our question on whether the long-

run average profits are larger or smaller than the Cournot profit. As before,
we consider the tent-map case and the period-3 case.

Tent-map case

We can calculate the long-run average profits,

Π̄Ti =
b(2β − 1)(7β − 4)

24β2 ,

Π̄Td =
b(7β − 4)
6(2β − 1) ,

(48)

and then the difference between the Cournot profit and the average profits,

Πci − Π̄Ti =
b(4 + 9β − 36β2 + 20β3)

6(2β − 1)(2β + 1)2 > 0,

Πcd − Π̄Td =
b(4 + 9β − 36β2 + 20β3)

24β(2β + 1)2
> 0.

(49)

which imply that the Cournot profit is larger than the average profit for both
the imitator and dualist. This result is also demonstrated in another way.
The long-run average profit of the imitator is

Π̄Ti =
1

2
{
Z x0

xm

Πi(x, ri(x))Φ
Tdx+

Z x0

xm

Πi(x, ri(x))Φ
Tdx

+

Z x0

xm

Πi(x, r
i
d(x))Φ

Tdx+

Z xM

x0

Πi(x, r
a
d(x))Φ

Tdx},

=
1

2

½Z x0

xm

Π1
i (x)Φ

Tdx+

Z xM

x0

Π2
i (x)Φ

Tdx

¾
,
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where

Π1
i (x) = Πi(x, ri(x)) +Πi(x, r

i
d(x)),

Π2
i (x) = Πi(x, ri(x)) +Πi(x, r

a
d(x)).

Thus the difference between imitator’s Cournot profit and average profit is,

Πci − Π̄Ti = Πci

Z xM

xm

ΦTdx− 1
2

½Z x0

xm

Π1
i (x)Φ

Tdx+

Z xM

x0

Π2
i (x)Φ

Tdx

¾
,

=
1

2


Z x1

xm

(Πci −Π1
i (x))| {z }

(+)

ΦTdx+

Z x0

x1

(Πci −Π1
i (x))| {z }

(−)

ΦTdx


+
1

2


Z xc

x0

(Πci −Π2
i (x))| {z }

(−)

ΦTdx+

Z xM

xc

(Πci −Π2
i (x))| {z }

(+)

ΦTdx

 ,
where Πci = Πi(x

c, yc) and x1 solves Πci = Π1
i (x). In Figure 4, the light grey

area is the integral of the first and fourth terms while the dark is the integral
of the second and third terms. It is obvious that the former dominates the
latter. In consequence, the Cournot profit of the imitator is larger than the
average profit.

xm x1 x0 xc xM

Pi
c

Pi
1

Pi2

xm x1 x0 xc xM

Pi
c

Figure 4. Difference between imitator’s Cournot profit and average profit.
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Period-3 case
In the period-3 case, the long-run average profits are

Π̄3
i =

b(−77 + 4β(71− 87β + 36β2))

192(β − 1)β2 ,

Π̄3
d =

b(−77 + 4β(71− 87β + 36β2))

48(2β − 1)2(β − 1) ,

(50)

and the differences between the Cournot profit and the average profits are

Πcd − Π̄3
d =

b(7+4(β−2)β)(11+4β(4+3β(4β−7)))

48(β−1)(1−4β2)2 > 0,

Πci − Π̄3
i =

192(1−2β)2(β−1)β2−b(1+2β)2b(−77+4β(71−87β+36β2))

192(β−1)β2(2β+1)2 > 0.

(51)

Again we obtain that the Cournot profit is larger than the long-run average
profits for both the imitator and the dualist. Calculations get longer and
much more tedious as the number of period of periodic cycle gets larger, but
it is possible, with mathematical induction, to confirm this result regardless
of the number.

Theorem 10 The Cournot profits are larger than the average profits for both
the imitator and the dualist,

Πci > Π̄i and Πcd > Π̄d.

5.3 Non-Markov Trajectory

We have so far examined the statistical dynamics in a case where F (x) and
G(y) are Markov. In this section, we investigate the statistical properties of
the average profit in a case where F (x) and G(y) are not Markov. Since we
are not able to use the mean ergodic theorem unless the density function is
constructed, we perform numerical simulations in order to verify whether the
results analytically derived for Markov case can hold in a non-Markov case.
For the numerical simulations, we fix the slope of the positive sloping

part of the dualist’s reaction curve α = 2 and increase the value of β form
3
2
to 3. 3

2
is the critical value at which the instability occurs and will be

denoted as βs. For β > 3, the map gives rise to multiple Cournot points
and its trajectory escapes from the feasible region. Thus 3 is the maximum
value that the parameter can take. We denote this critical value by βT as
F (x) and G(y) become the tent maps for α = 2 and β = 3. β measures the
degree of strategic substitutability of the dualist as shown in (14). Note that
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increasing this parameter value corresponds to pronounced steepness of the
downward sloping part of the dualist’s reaction curve.
Figure 5 illustrates the results of numerical simulations of the long-run

average profits of the imitator (in the left panel) and the dualist (in the
right panel) against variations of parameter β. For comparison, graphs of
the Cournot profits are also depicted. In each panel, the parameter β has
been increased in steps of 0.01, and for each of these β-values, the average is
calculated from 5, 000 iterations. For values of β indicated by β3 and β1, the
map generates the periodic 3 cycle and eventually-fixed cycle respectively. In
other words, the map is Markov for these β values for which the analytical
values of the average profit can be calculated. The heavy dots on the vertical
lines at β1 and β3 indicate the analytical value of the average profit and the
white circles indicate the corresponding Cournot profit. It is safe to say that
the simulations approximate the analytical results for any other β-values as
the simulation results plotted against these critical β-values pass through the
points obtained from analytical results. We observe that for any value of β,
the Cournot profit is higher than the long-run average.

bTb3b1bs

Pi Imitator

P
êêê

i

Pi
c

bTb3b1bs

Pi Dualist

P
êêê

d

Pd
c

Figure 5. Numerical simulations of imitator’s and dualist’s profits.

We then check whether the ratio of the average profit is constant. Figure
6 shows plots of the ratio of the average profit of the imitator to the average
profit of the dualist under the same initial conditions and the same parameter
conditions but the number of iterations is 50 in the left panel and 5000 in the
right panel. The generally upward-sloping locus but with small indentations
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is the set of the ratios of average profits as a function of β. Comparing the left
panel with the right, we can say that the locus gets smoother as the number
of iterations gets larger. We also find that each calculated ratio is located
on (2β−1

2β
)2 curve (which is not depicted in the panel) for the large number of

iterations. The dots on the locus correspond the analytical results obtained
from the calculations done in the previous section. From an examination of
the graph, it is safe to surmise that the average profit ratio may converge
to the constant value α2

i = (
2β−1

2β
)2 as the number of iterations is increased.

These numerical results support the analytical results.
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Figure 6. Average profit ratios (50 iterations in the left panel and 5000 in
the right).

6 Concluding Remarks

In this study, we have constructed the nonlinear Cournot model in which
the duopolists have production externality and examined the long-run or
statistical behavior associated with chaotic dynamics of output. Although
chaotic trajectories of x and y exhibit highly irregular motions, the ratio of
the average output of x to that of y shows a predictable trend, that is, the
ratio is equal to the ratio of Cournot outputs as summarized in Theorem 6.
The imitator as well as the dualist produce more than the Cournot output in
some periods and less in other periods but, on the average, produces more at
the Cournot point. For the demand side, this result implies that consumers
can afford to purchase a smaller amount of goods at the higher price on the
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average. Similar statistical properties hold for the long-run average profit.
Theorem 8 indicates that the ratio of the average profits is equal to the ratio
of the Cournot profits, and Theorem 9 implies that the Cournot profit is
larger than the average profit. These statistical properties are analytically
as well as numerically confirmed. However, this does not mean that chaotic
production is less favorable than the production at Cournot point because
our analysis is limited to dynamics in the imitator-dualist market. We need
to investigate other markets such as the accommodator-dualist market or the
dualist-dualist market which may have interesting dynamics which have not
yet been analyzed.
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Appendix

In this Appendix, we prove Theorem 9 in three steps; we derive the long-
run average profit of imitator in the first step, then the average profit of
dualist in the second step, and finally we clarify the relationship between
these average profits.

Step 1. From Theorem 8 and (47), the long-run average profit of the
imitator is defined as follows.

Π̄i =
1

2
{
Z x0

xm

[Πi(x,
x

αi
) +Πi(x, r

i
d(x))]ΦIdx

+

Z xM

x0

[Πi(x,
x

αi
) +Πi(x, r

a
d(x))]ΦIIdx}

= αib{
Z x0

xm

x(
α+ β − αβ

β
+ αx)ΦIdx+

Z xM

x0

β(1− x)xΦIIdx}

where the steps of the density are divided into to two, ΦI on [xm, x0] and ΦII
on [x0, xM ].

Step 2. It is convenient to define the long-run average profit of the dualist
in terms of y as follows.

Π̄d =
1

2
{[
Z y0

ym

[Πid(αiy, y)ΨIdy +

Z yM

y0

Πad(αiy, y)ΨIIdy]

+

Z y0

ym

[Πid(r
i−1

d (y), y)ΨIdy +

Z yM

y0

Πad(r
a−1

d (y), y)]ΨIIdy}.

Here the sum of the first two terms is the average profit along the imitator’s
reaction curve and the sum of the last two terms is the average profit along
the dualist’s reaction curve. ri

−1

d (y) and ra
−1

d (y) are the inverse of rid(y) and
rad(y) respectively. As in Step 1 above, the steps of density Ψ are decomposed
into two, ΨI on [ym, y0] and ΨII on [y0, yM ]. Adding the first and the third
term, and the second and the forth term, and then arranging yield,

Π̄d = b{
Z y0

ym

(
α+ β − αβ

β
+ αiαy)yΨIdy +

Z yM

y0

(β(1− αiy)y)ΨIIdy}.
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Step 3. In Π̄i substituting x = αiy and using the result of Theorem 3,
Π̄i can be written as follows.

Π̄i = αib{
Z x0/αi

xm/αi

αiy(
α+ β − αβ

β
+ ααiy)ΦI(αidy)

+

Z xM/αi

x0/αi

β(1− αiy)αiyΦII(αidy)}

= α2
i

½
b{
Z y0

ym

(
α+ β − αβ

β
+ αiαy)yΨIdy +

Z yM

y0

(β(1− αiy)y)ΨIIdy}
¾

= α2
i Π̄d.

Since the Cournot profits are constant, we can show Πci − Π̄i = α2
iΠ

c
d−α2

i Π̄d
in the same way. This proves Theorem 9.
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