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Abstract

This study examines the effect of no-arbitrage on the Nelson-Siegel (NS) yield curve under

stochastic interest-rate volatility. Unlike under constant volatility, in which only a constant

(convexity-adjustment) term of a yield function differs with and without no-arbitrage, factor

loadings also differ when the volatility is spanned by interest-rate factors. After controlling

for the drift, we find that spanned volatility does not magnify the effect of no-arbitrage

relative to constant volatility. The finding supports a conventional use of the NS model such

that the model is augmented with stochastic volatility after identifying the factors from the

yield curve.

Keywords: Nelson-Siegel model, Yield curve, Interest rate, No-arbitrage, Stochastic volatil-

ity.
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1 Introduction

This study examines the effect of no-arbitrage on the Nelson and Siegel (NS) (1987) model when

the volatility of changes in interest-rate factors is stochastic. The NS model is a convenient tool

for describing the cross-section of interest rates, and hence used for both practical and academic

purposes.1 Diebold and Li (DL) (2006) augment the NS model with dynamics. Specifically, they

interpret the loadings of the NS model that depend on the time to maturity as the explanatory

variables, and the coefficients of the loadings as the factors. Then, they obtain the factors at

each point in time by fitting the NS yield curve to the observed curve and estimate the dynamics

of the factors from the pooled data. The dynamic NS model has also become a popular tool for

studying both the time-series and cross-section of interest rates, such as in works by Diebold,

Rudebusch, and Aruoba (2006), Diebold, Li, and Yue (2008), and Koopman, Mallee, and Van

Der Wel (2010).

In contrast, there is a theoretical criticism that the NS model does not preclude arbitrage

opportunities; see Björk and Christensen (1999), and Filipović (1999). Christensen, Diebold, and

Rudebusch (CDR) (2009, 2011) present a solution that makes the dynamic NS model consistent

with no-arbitrage, while preserving the same factor loadings as in the original NS model. The

arbitrage-free NS model is a special case of affine term structure models. Due to the convexity

adjustment, the no-arbitrage yield deviates from the original NS yield by a maturity-dependent

constant. Hence, the magnitude of this constant indicates how large the effect of no-arbitrage

is on the NS yield curve. Indeed, Coroneo, Nyholm, and Vidova-Koleva (2011) examine this

difference and find it minor.2 Chen and Du (2013) extend this argument to the case in which

interest-rate volatility is driven by an unspanned factor; that is, a factor that does not affect the

cross-section of interest rates. They employ the Heath, Jarrow, and Morton (1992) framework,

with which it is straightforward to make a volatility factor unspanned; see Collin-Dufresne and

Goldstein (2002). Since the loading of the yield function does not change when including the

unspanned volatility factor, the argument reduces to the one with constant volatility, in which

the difference in the model-implied yields with and without no-arbitrage is summarized in the

convexity-adjustment term.

1Söderlind and Svensson (1997) extend the NS model by adding an additional hump term to improve the fit

of the long end of the yield curve.
2Coroneo et al. (2011) do not follow CDR when specifying the risk neutral drift of changes in factors. Therefore,

the factor loadings consistent with no-arbitrage are not exactly the same as those in the NS model.
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Yet unanswered is the case in which interest-rate factors drive the volatility; that is, spanned

volatility. Since the original NS model is silent about the volatility, or more generally the

dynamics, there is no reason to exclude spanned volatility. In this case, not only the convexity-

adjustment term but also the factor loadings may be different from those in the NS model.

The purpose of this study is to examine, under stochastic volatility spanned by interest-

rate factors, the effect of no-arbitrage on the NS yield curve. In particular, we ask whether

the extension from constant to spanned volatility magnifies the effect. Our examination relies

on specific models and datasets because while the difference in yields with and without no-

arbitrage does exist in theory, its magnitude is a practical issue, which requires some setup of

the specification and estimation/calibration. However, given our research purpose, the choice

of setup may not be an issue. Specifically, we aim to find an incremental effect from constant

to spanned volatility, which does not seem to change from one setup to another because the

effects with constant and spanned volatility are detected under the same conditions and then

relativized.

To obtain a spanned-volatility model, we extend the arbitrage-free NS model proposed by

CDR such that the covariance matrix of changes in factors depends on the level of factors while

holding the risk neutral-drift unchanged. This extension enables us to detect an incremental

effect of no-arbitrage on the NS yield curve attributed solely to spanned volatility. We consider

two approaches to the detection.

The first approach focuses on the yield curve. Specifically, we feed both the factor and

parameter values obtained without imposing no-arbitrage into the no-arbitrage version of the

models. Then, we compute the ex-post no-arbitrage yield and compare it to the original NS

yield. The second approach looks to the factors and parameters. In this approach, we extract

the factors and estimate their dynamics simultaneously in both cases with and without no-

arbitrage. Since the model-implied yields match the observed yields directly, they would differ

little with and without no-arbitrage. Instead, the difference would arise in the extracted factors

and estimated parameters.

We employ the dataset from DL to estimate the models, which allows us to compare our re-

sults for spanned volatility to those for constant volatility reported by Coroneo et al. (2010), who

also use the DL dataset. To check the robustness, we also use an alternative dataset constructed

by Gürkaynak, Sack, and Wright (GSW) (2007), which covers more recent observations.

We find from the first approach that the ex-post no-arbitrage yield deviates from the NS
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yield, but that the degree of deviation is similar on average between the constant- and spanned-

volatility models. The deviation for a spanned-volatility model varies over time, depending on

the level factor of interest rates. Specifically, when interest rates are high (low), the deviation

becomes large (small). This pattern emerges because the model-implied yield has a constant

term that increases with maturity and a loading on the level factor that decreases with maturity.

We find from the second approach that the volatility of the level factor is estimated lower

when no-arbitrage is imposed than when it is not. However, the degree of decline in volatility is

similar on average for the constant- and spanned-volatility models. Additionally, the spanned

volatility does not magnify the difference in the extracted factors with and without no-arbitrage.

Taken together, the imposition of no-arbitrage alters the cross-section and/or time-series of

interest rates implied originally by the (dynamic) NS model. However, the magnitude of these

changes is not sensitive to the modeling of volatility, which has an important implication. If we

can accept the inconsistency with no-arbitrage that the standard (dynamic) NS model induces,

we can enrich the model with stochastic volatility, which might be specified independently of

the extraction of factors.

The rest of the manuscript proceeds as follows. Section 2 presents the models. Sections 3

and 4 explain the data and estimation method, respectively. Section 5 presents the results and

Section 6 concludes.

2 Model

We first present the dynamic NS model with constant volatility and its no-arbitrage version in

Section 2.1, and then extend them with spanned volatility in Section 2.2.

2.1 The dynamic NS model and its no-arbitrage version

Following DL, let Xt = (x1,t, x2,t, x3,t)
′ be a vector of factors driving the yield curve. Using

Xt, a τ -maturity yield of the NS model is

Y NS(Xt, τ) = B(τ)′Xt , (1)

where B(τ) is a three-dimensional vector,

B(τ) =

(
1,

1− e−λτ

λτ
,

1− e−λτ

λτ
− e−λτ

)′

, (2)

with λ > 0.
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In the standard dynamic NS model considered by DL, the physical distribution of instanta-

neous changes in Xt is given by

dXt ∼ N [ (K0 +K1Xt) dt, SRS dt ] , (3)

where

K0 =


k0,1

k0,2

k0,3

 , K1 =


k1,11 k1,12 k1,13

k1,21 k1,22 k1,23

k1,31 k1,32 k1,33

 , R =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 , (4)

S =


σ1 0 0

0 σ2 0

0 0 σ3

 , (5)

with |ρij | < 1 and σi > 0. We label the model consisting of (1) and (3) as “NS-CV” (Nelson-

Siegel Constant-Volatility).

CDR make the dynamic NS model consistent with no-arbitrage. For this purpose, they

specify the risk-neutral distribution of dXt and the instantaneous risk-free rate rt as

dXt ∼ N [ KQ
1 Xt dt, SRS dt ] , (6)

rt = x1,t + x2,t , (7)

where

KQ
1 =


0 0 0

0 −λ λ

0 0 −λ

 . (8)

We label the model consisting of (3), (6), and (7) as “AF-CV” (Arbitrage-Free Constant-

Volatility).

The no-arbitrage yield Y AFCV (Xt, τ) is derived endogenously as

Y AFCV (Xt, τ) = A(τ) +B(τ)′Xt , (9)

where B(τ) is given by (2) and

A(τ) = −1

2
τ

∫ τ

0
B(t)′SRSB(t)dt . (10)

Comparing (9) with (1), we notice that the no-arbitrage yield differs from the NS yield only by

a maturity-dependent constant, A(τ), which by (10) is the convexity-adjustment term, taking
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negative values for τ > 0. Then, the magnitude of A(τ) measures the effect of no-arbitrage on

the yield curve under constant volatility. To compute A(τ), the values of S and R (together

with λ in B(τ)) are needed, which this study estimates from the actual data.

When the volatility is spanned by interest-rate factors, it is not straightforward to examine

the effect of no-arbitrage on the yield curve because both A(τ) and B(τ) may change from

those in the NS model. In the next subsection, we consider a spanned-volatility model such that

only the covariance matrix in the distribution of dXt differs from that for the constant-volatility

model.

2.2 An extended model with spanned volatility

We simply replace the constant covariance matrix in the NS/AF-CV model with a state-

dependent one, and leave the other components of the model unchanged. This aims to control

for the drift and address whether the spanned volatility magnifies the effect of no-arbitrage on

the NS yield curve. Specifically, the physical and risk-neutral distributions of dXt are given,

respectively, by

dXt ∼ N [ (K0 +K1Xt) dt, StRSt dt ] , (11)

dXt ∼ N [ KQ
1 Xt dt, StRSt dt ] , (12)

where K0, K1, K
Q
1 , and R are the same as given by (4) and (8). As in the constant-volatility

model, St is a diagonal matrix with the i-th diagonal element in absolute value interpreted as the

standard deviation of the i-th factor. We specify the i-th diagonal element as a linear function

of Xt:
3

si(Xt) = σi + β′
iXt (i = 1, 2, 3) . (13)

Takamizawa (2015) shows that this specification is suitable to capturing interest-rate volatility

without increasing the number of factors. The reason for not considering the affine specification

(i.e., square-root of some of the elements ofXt) is addressed below. We label the model consisting

of (1) and (11) as “NS-SV” (Nelson-Siegel Spanned-Volatility) and the model consisting of (7),

(11), and (12) as “AF-SV” (Arbitrage-Free Spanned-Volatility). The NS/AF-CV model is a

special case of the NS/AF-SV model with βi = 0 for all i.

3We also consider a level-dependent correlation matrix satisfying the positive definiteness. The results (avail-

able upon request) show that the effect of no-arbitrage on the NS yield curve is not magnified by the extension

to spanned volatility and correlation.
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Since the AF-SV model is non-affine, there is no closed-form of the no-arbitrage yield, denoted

as Y AFSV (Xt, τ). We then compute this value by relying on an approximation method proposed

and implemented by Takamizawa and Shoji (2009), and Takamizawa (2018). The method ap-

proximates conditional moments as a system of ordinary differential equations. Because the

zero-coupon bond price is the conditional first moment of the stochastic discount factor, this

method can directly be applied. Appendix A presents the accuracy of the approximation, which

remains as long as we use realistic values for the factors and parameters.

In the spanned-volatility model, the covariance matrix StRSt is guaranteed to be positive

definite for any value of Xt without restricting the sign of Xt. This is in sharp contrast to

affine term structure models that require sign constraints, by which we cannot adopt the same

risk-neutral drift as in (6). When using a different risk-neutral drift, it is difficult to distinguish

between the volatility channel and the (risk-neutral) drift channel of no-arbitrage effects. Thus,

this study does not employ the affine models with spanned volatility.

3 Data

This study uses the same dataset constructed by DL, which is downloaded from Francis Diebold’s

website. It consists of end-of-month zero-coupon bond yields with maturities of 1, 3, 6, 9, 12, 15,

18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months, and covers the period from January

1985 to December 2000 (192 observations).4

To check the robustness, we use an alternative dataset constructed by GSW (2007). 5 To

maintain consistency with the main dataset, we use end-of-month observations of continuously

compounded zero-coupon bond yields with maturities ranging from one to ten years, for the

period from January 1985 to December 2017 (396 observations). Previous studies that limit the

maturity range to ten years include Bauer, et al. (2012), Dai and Singleton (2000), Diebold et

al. (2006), Diebold et al. (2008), Duffee (2002), Joslin et al. (2011), Koopman et al. (2010), and

Wu and Xia (2016). The summary of the results is presented in Appendix B. Since the period

of low volatility is longer than it is in the main dataset, the effect of no-arbitrage is smaller for

both the constant- and spanned-volatility models. More important here is that it differs little

between these models, confirming our conclusion that spanned volatility does not magnify the

effect of no-arbitrage.

4While the data start from January 1970, DL use them from January 1985.
5The data are downloaded from https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
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4 Extraction of factors and estimation of their dynamics

We consider two approaches to extract the factors and estimate the parameters. Section 4.1

explains the two-step approach demonstrated by DL, in which the factors are first extracted

by fitting the NS yield curve to the observed curve and then their dynamics are estimated

using the data pooled from the first step. These factors and parameters from the NS-CV/SV

models are fed into the AF-CV/SV models to compute the no-arbitrage yield curve, which is

finally compared to the original NS yield curve. The two-step approach examines the effect of

no-arbitrage from the perspective of a conventional use of the NS model.

Section 4.2 explains the one-step approach, in which we estimate the NS-CV/SV models

(without no-arbitrage) and the AF-CV/SV models (with no-arbitrage) to obtain the values of

the factors and parameters simultaneously. The model-implied yields would differ little with

and without no-arbitrage because they match the observed values directly. Instead, the model-

implied factors and parameters would differ. These differences are not fully investigated by

previous studies, especially under spanned volatility. The one-step approach aims to find the

effect of no-arbitrage from the perspective of a sophisticated use of the NS model.

4.1 Two-step approach

Let yt,τ be a τ -maturity zero-coupon bond yield observed at time t. Then, in the first step, the

vector Xt of factors is obtained at each point in time from the following regression equation:

yt,τ = B(τ)′Xt + ϵt,τ , (14)

where B(τ) is given by (2) and ϵt,τ is a measurement error. Following DL, we fix the value of

λ in B(τ) at λ = 0.0609 and implement the ordinary least squares (OLS) T (= 192) times to

obtain the T -by-3 data on Xt. We express Xt in raw numbers rather than in percentage terms.

In the second step, the dynamics of Xt, given by (3) for constant volatility and (11) for

spanned volatility, are estimated using the data on Xt above. The (quasi-)maximum likelihood

method is employed, in which the conditional first and second moments are substituted into the

normal density function. While the likelihood function is exact for the NS-CV model, it is not

for the NS-SV model. However, the moments are computed exactly as the drift vector is linear

and the instantaneous covariance matrix is quadratic in Xt.
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4.2 One-step approach

We also employ the (quasi-)maximum likelihood method together with the (extended) Kalman

filter. The transition equation is based on (3) for constant volatility and (11) for spanned

volatility. The observation equation is

yt,τ = Y j(Xt, τ) + ϵt,τ , ϵt,τ ∼ N(0, ω2
τ ) (j = {NS,AFCV,AFSV }) . (15)

Several notes on the estimation are in order. First, λ in KQ
1 is fixed at λ = 0.0609 as

in DL, rather than treated as a free parameter in order to control for the risk-neutral drift.

Second, to ease the interpretation of the results, the standard deviations of measurement errors

are simplified to ω1 for τ = 3 (month) and ω2 for the remaining maturities. The three-month

yield is separated because it originally has a larger measurement error when explained by the

NS model. Third, the initial value of Xt is given by the observed value, which is obtained by

fitting the NS model to the first observation of the yield curve, rather than by the model-implied

unconditional mean. Hence, the likelihood function is conditional on the first observation, which

greatly enhances numerical stability. Finally, to apply the Kalman filter, the no-arbitrage yield

for the spanned-volatility model, Y AFSV (Xt, τ), which is a nonlinear function of Xt, is linearized

around a predicted value of Xt. More sophisticated, computationally demanding estimation

methods are difficult to apply when combined with the computation of Y AFSV (Xt, τ).

5 Results

We report the results for the two approaches explained in Section 4. Section 5.1 compares the

ex-post no-arbitrage yield to the original NS yield. We also address how the factor loadings

change by extending the volatility from constant to spanned. Section 5.2 compares the factors

and parameters with and without no-arbitrage obtained in the one-step approach.

5.1 Results for the two-step approach

Table 1 presents the estimates (standard errors) of the parameters for the two-step approach.

In this study, the standard error is computed by the outer product of the gradient of the log-

likelihood function. For parsimony, only the diagonal elements of K1 (i.e., k1,ii; i = 1, 2, 3) are

estimated. Furthermore, since k0,2 and k0,3 in K0 are statistically insignificant when estimated

as free parameters, only k0,1 is estimated. NS-SV-F is the fully-parameterized version whereas
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NS-SV-R is a restricted version, where only significant parameters in the volatility function

s(Xt) are estimated.

The results for the NS-CV model show that the curvature factor x3,t is the most volatile

(σ3 = 0.026) and least persistent (k1,33 = −1.158) among the factors. The level factor x1,t and

the slope factor x2,t are similarly volatile (σ1 = σ2 = 0.011) while the latter is somewhat more

persistent (k1,11 = −0.308 < −0.163 = k1,22). Only the pair of x1,t and x2,t has a significant

correlation coefficient (ρ12 = −0.673).

These basic features of the factors remain in the spanned-volatility model. In particular,

the estimates in the drift do not differ significantly between the constant- and spanned-volatility

models. It is the overall statistical fit that improves owing to the extension to spanned volatility.

The value of the maximum log-likelihood (LogL) for the NS-SV-R model is 2411, increased from

that for the NS-CV model (2391) without increasing the number of free parameters. However,

more volatility parameters contribute little to the overall fit because the LogL value for the

NS-SV-F model is larger than that for the NS-SV-R model by only 2.

Among the parameters in si(Xt), only β11 and β21 are significant. For the NS-SV-R model,

these values are 0.139 and 0.149, respectively. This result implies that the level factor alone is

a significant driver for the volatility of changes in the level and slope factors in this dataset.

These factors are more volatile for higher levels of interest rates. By contrast, such a level

dependence of volatility is not observed for the curvature factor because none of β3i (i = 1, 2, 3)

are significant.

These estimates in Table 1, together with the data on Xt, are used as inputs for the AF-

CV/SV models to obtain the ex-post no-arbitrage yield. Table 2 presents the mean, standard

deviation (S.D.), minimum (Min), and maximum (Max) of the difference in the model-implied

yields, Y j(Xt, τ)−Y NS(Xt, τ) (j = {AFCV,AFSV }). Remember that the difference is constant

for the AF-CV model at a given maturity (i.e., A(τ)). For the AF-CV model, the difference is

negative and more so for longer maturity by construction of A(τ) given by (10). It ranges from

almost zero at τ = 3 (months) to −20 basis points (bps, 1 bp = 1/10,000) at τ = 120. This gives

a benchmark for the extent to which a conventional use of the NS model is inconsistent with

no-arbitrage when using the DL dataset. Coroneo et al. (2011) conclude that the inconsistency

of this magnitude may not be a serious concern.

The mean difference for the AF-SV models has a similar pattern. For instance, the average

ten-year yield generated by these models is lower by around −20 bps than that for the NS model.
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Unlike the constant-volatility model, the spanned-volatility model generates a varying difference

because it has the factor loadings that are no longer the same as those for the original NS model,

despite having the same risk-neutral drift. The standard deviation of the difference is 6.6 bps for

AF-SV-F and 4.5 bps for AF-SV-R at τ = 120. While the smallest deviation (Max in Table 2)

is similar between the two models (e.g., around −9.5 bps at τ = 120), the largest deviation (Min

in Table 2) for the unrestricted model is larger (−41 bps) than that for the restricted model

(−32 bps). Such a large deviation is observed in the early part of the sample, when the level of

interest rates is high.

Figure 1 depicts the time-series of the difference in ten-year yields between the spanned-

volatility and NS models. For reference, the analogous difference generated by the AF-CV

model is also shown, which is the horizontal line at around −20 bps. Apparently, the difference

with and without no-arbitrage trends upward, which aligns with a decreasing trend in the level

of interest rates. The proportion of cases in which the difference for the spanned-volatility model

is smaller in absolute value than that for the constant-volatility model (that is, the frequency at

which the plot is inside the horizontal line) is 48% for AF-SV-F and 66% for AF-SV-R. Therefore,

the extension to spanned volatility does not necessarily reinforce the effect of no-arbitrage on

the NS yield curve.

To explore why the interest-rate level matters with the deviation in yields between the AF-SV

and NS models, we project Y AFSV (Xt, τ) on a constant and Xt for each τ :

Y AFSV (Xt, τ) = c0,τ + c′τXt + ut,τ , (16)

where the residual term ut,τ collects the remaining nonlinear terms of Xt. The coefficients are

estimated with OLS.

Figure 2 depicts the estimated c0,τ and cτ over τ . For comparison, the analogous plots for

the NS and AF-CV models are displayed: c0,τ = 0 and c1,τ = B(τ) for NS, and c0,τ = A(τ) and

c1,τ = B(τ) for AF-CV, where A(τ) and B(τ) are given by (10) and (2), respectively. Panel (a)

presents c0,τ expressed in bps. Notice that for the AF-CV model, it is equal to the difference

presented in Table 1. It is found that c0,τ is positive for the spanned-volatility model and more

so for longer maturities. For instance, at τ = 120, it is 12 bps for AF-SV-F and 5 bps for AF-

SV-R. The positive constant, however, is offset by a smaller c1,τ (the coefficient of x1,t) in Panel

(b). At τ = 120, it is 0.95 for AF-SV-F and 0.97 for AF-SV-R, both of which are smaller than

that for AF-CV fixed at one. Therefore, when x1,t is large (small), the yield for the spanned-

volatility model is low (high) relative to that for the constant-volatility model. The reason for
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the decreasing c1,τ is intuitively understood by recalling the affine term structure model with

spanned volatility. In estimating this model, the resulting volatility factor is often persistent and

correlated with long-term interest rates. In short, a factor driving the volatility is also the level

factor of interest rates. Then, the convexity adjustment matters with the loading on the level

factor as well as the constant term in the no-arbitrage yield function, and the loading decreases

with maturity as does the constant term.

By contrast, c2,τ and c3,τ in Panels (c) and (d) differ little across the models. This holds

true for the AF-SV-F model, in which the slope and curvature factors also drive the volatility,

thereby their loadings may possibly be affected by no-arbitrage as the convexity adjustment.

In summary, the ex-post no-arbitrage yield is no longer the same as the original yield com-

puted with the NS model. However, how different they are differs little on average for constant

and spanned volatility.

5.2 Results for the one-step approach

5.2.1 Parameter estimates for the constant-volatility model

Table 3 presents the estimates (standard errors) of the parameters in the one-step approach, in

which the filtration of Xt from the cross-section of interest rates and estimation of the dynamics

of Xt is performed simultaneously. First, we compare the results for the NS-CV model between

Tables 1 and 3. The estimates do not change significantly, indicating that the dynamics of Xt are

not much affected by how Xt is elicited, simultaneously with or independently of the estimation

of the dynamics.

Next, we compare the results between NS-CV and AF-CV within Table 3, and find some no-

table changes. First, the estimate of σ1 decreases from 0.010 without no-arbitrage to 0.008 with

it. Since a lower volatility leads to a smaller convexity adjustment given the factor loading B(τ)

(i.e., λ = 0.0609 in (2)), the no-arbitrage condition works to reduce the convexity adjustment

by affecting the volatility of the level factor. Put differently, the volatility estimated from the

time-series dimensions of the data alone is large for the cross-sectional dimensions of the data

that are consistent with no-arbitrage.

Second, the value of the maximum log-likelihood (LogL) decreases from 18037 to 17933 by

imposing no-arbitrage, indicating that no-arbitrage is restrictive for the overall statistical fit.6

6This result is not conclusive because in the alternative dataset, which contains more observations of low

interest rates, the imposition of no-arbitrage does not necessarily reduce the LogL value, which is explained as
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Meanwhile, the magnitude of the measurement errors does not appear to change largely. ω1 for

the three-month yield and ω2 for the remaining yields increase by 0.4 bps and 0.2 bps, respec-

tively, by imposing no-arbitrage. Though economically small, the latter increase is statistically

significant, reducing the LogL value by about 100.

5.2.2 Parameter estimates for the spanned-volatility model

It is easy to see that the estimates for the NS-SV-R model do not change significantly between

Tables 3 and 1. This also holds true for the NS-SV-F model, although it is not straightforward to

see this because of the many insignificant parameters. Therefore, the finding that the estimated

dynamics of Xt are robust to different eliciting approaches also holds for spanned volatility.

We next compare the results between NS-SV-R and AF-SV-R in the last two columns of

Table 3. As is the case for the constant-volatility model, the imposition of no-arbitrage mainly

affects the volatility of changes in the level factor, which here is a function of Xt or s1(Xt) given

in (13). The estimate of β11 decreases from 0.133 to 0.097 by imposing no-arbitrage. Given

the level of x1,t (around 0.077), the decrease in volatility is of similar magnitude to that for the

constant-volatility model. Furthermore, while the increase in measurement errors is marginal,

this decreases the LogL value by about 100.

The results for the unrestricted spanned-volatility model in the middle two columns of Table

3 have a similar pattern to the restricted counterpart. The volatility of the level factor decreases

by imposing no-arbitrage. More precisely, though the constant term becomes positive and

marginally significant with no-arbitrage (σ1 = 0.002), the coefficient of the level factor is much

smaller with it (β11 = 0.057) than without it (β11 = 0.195). Given the level of x1,t, the decrease

in β11 dominates the increase in σ1. The unrestricted model has other parameters that become

significant by imposing no-arbitrage. β12 decreases from 0.074 to −0.089. Since the slope factor

is x2,t = rt−x1,t (i.e., the spread between short- and long-term yields), the negative estimate of

β12 implies that a negative shock to x2,t—a shock that raises the slope of the yield curve—raises

the volatility of the level factor. Although the level of β33 does not change (−0.19), the estimation

precision improves with no-arbitrage. Because some of the originally insignificant parameters are

used for fitting the data, no-arbitrage may be less restrictive for AF-SV-F. Indeed, the decrease

follows. The low interest rate environment reduces the significance of the parameters in the covariance matrix.

However, when no-arbitrage is imposed, some of these parameters become significant as they are adjusted to the

cross-section of interest rates rather than the time-series. Then, the improvement in the cross-sectional fit, though

economically small, increases the LogL value.
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in LogL is 89 (from 18060 to 17971), which is a bit less than that for AF-CV and AF-SV-R.

Taken together, while no-arbitrage may be restrictive from a statistical point of view, the

way and extent to which no-arbitrage affects the time-series and cross-section of interest rates

is similar for both the constant- and spanned-volatility models.

5.2.3 Elicited factors

The difference in factors with and without no-arbitrage is denoted as eji,t = xAFj
i,t − xNSj

i,t (i =

1, 2, 3; j = {CV, SV F, SV R}). Table 4 presents the mean, standard deviation (S.D.), minimum

(Min), maximum (Max), and first autocorrelation (AR(1)) of eji,t, where the numbers are in bps

except for the AR(1). For each factor, the mean difference is similar across the models. For

instance, for the level factor, it is 13 bps, which is less than the difference for the ten-year yield

by the two-step approach (around 20 bps). The mean difference for the curvature factor is the

largest in absolute value, implying that it is difficult to pin down precisely. However, since the

loading on the curvature factor is small, such a large difference does not lead to a large difference

in yields.

Unlike the mean, the standard deviation of the difference in factors varies between the

constant- and spanned-volatility models. The standard deviation of eSV R
1,t is 3 bps, which is

larger than that for the constant-volatility model (0.8 bps). Also of note is that the spanned-

volatility model generates a much more persistent difference than does the constant-volatility

model. The first autocorrelation of eSV R
i,t ranges from 0.85 (i = 3) to 0.98 (i = 2), whereas that

of eCV
i,t ranges from 0.15 (i = 2) to 0.46 (i = 3).

Figure 3 depicts the time-series of eji,t. eCV
i,t slightly fluctuates around the mean, whereas

eSVi,t trends toward zero, which is in line with Figure 1 using the two-step approach. These

results also support the finding that spanned volatility does not necessarily magnify the effect

of no-arbitrage on the filtration of factors.

6 Concluding remarks

This study examined the effect of no-arbitrage on the NS (1987) yield curve when the volatility

of changes in interest-rate factors depends on the level of the factors; that is, spanned volatility.

Our primary focus is whether spanned volatility magnifies the no-arbitrage effect relative to

constant volatility. The question is important to address because if it were not the case, it
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could be possible to enrich the dynamics of interest rates based on the NS model, such as by

augmenting stochastic volatility for time-series after extracting the factors from the cross-section.

Although such an augmented model might not escape the inconsistency with no-arbitrage, the

degree of inconsistency would not be very different from that for a constant-volatility model

used in the conventional approach demonstrated by DL (2006).

We find evidence supporting this argument by using two approaches with the DL dataset.

In the two-step approach, in which we extract the factors and estimate their dynamics sepa-

rately without imposing no-arbitrage, the ex-post no-arbitrage yield deviates from the original

NS yield by 20 bps on average at the ten-year maturity for both the constant- and spanned-

volatility models. The deviation for the latter model varies over time and becomes occasionally

large. However, the frequency at which the deviation exceeds 20 bps is around or less than 50

percent. In the one-step approach, in which we extract the factors and estimate their dynamics

simultaneously, the volatility of changes in the level factor declines by imposing no-arbitrage,

which is of similar magnitude on average for the constant- and spanned-volatility models. Fur-

thermore, while the extracted factors may differ with and without no-arbitrage, the overall

difference is not magnified by extending from constant to spanned volatility.
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Appendix A. Accuracy of approximation

This appendix examines the accuracy of the approximation used to compute the arbitrage-free

yield for AF-SV-F and AF-SV-R. The parameter values are taken from Table 3. An approxi-

mation error is defined as the difference between the approximate yield and the yield computed

by the Monte Carlo (MC) method.

To compute the MC yield, a path of the state vector {Xs}t+τ
t is generated from the risk-

neutral distribution given by (12), where dt is replaced by ∆t = 1/240, which is roughly equal

to a daily observation frequency. Several starting values of Xt = (x1,t, x2,t, x3,t) are selected

as follows. First, we pick the three sets of Xt containing the minimum, median, and maximum

values of the level factor x1,t. This is repeated for the slope factor x2,t and the curvature factor

x3,t, resulting in nine sets of Xt. The data on Xt are obtained by fitting the NS yield curve to

the observed curve at each point in time over the sample period. The number of repetition is

set at 100,000 with antithetic variates.

Table A1 presents the ten-year yields computed using the approximation and MC methods,

and the difference between the two as an approximation error. We focus on only the ten-

year maturity as the approximation worsens as the maturity period increases. The accuracy of

the approximation tends to be low when either the slope or curvature factor is low and when

the level factor is high; the difference then exceeds 2 bps. Note that since the slope factor is

x2,t = rt − x1,t given by (7), the minimum (maximum) slope corresponds to the steepest (least

steep) yield curve. On typical days when one of the factors takes the median value, the difference

is less than 1 bp. Overall, accuracy does not seem to be a serious concern.

16



Appendix B. Robustness check using an alternative dataset

The dataset constructed by GSW (2007) are used to check the robustness of the results. We

use end-of-month observations of continuously compounded zero-coupon bond yields with ma-

turities ranging from one to ten years for the period from January 1985 to December 2017 (396

observations). Compared to DL’s dataset, this dataset contains more observations of low interest

rates.

We modify the estimation slightly. In the one-step approach with the (extended) Kalman

filter, the observation equation without no-arbitrage is

yt,τ = c0 +B(τ)′Xt + ϵt,τ . (17)

That is, we add a constant c0. Similarly, under no-arbitrage, the risk-neutral distribution of dXt

is

dXt ∼ N [ (KQ
0 +KQ

1 Xt) dt, StRSt dt ] , (18)

where KQ
0 = (kQ0,1, 0, 0)′. That is, we add kQ0,1. These additional parameters associated with

the cross-section of interest rates are highly significant, which is shown in Table B3, and greatly

improve the statistical fit to the alternative data.

Tables B1–B4 and Figures B1–B3 are analogous to Tables 1–4 and Figures 1–3 of the main

text, respectively. We do not present the results for the unconstrained spanned-volatility model

(NS/AF-SV-F) in the one-step approach as they are similar to those for the restricted counter-

part (NS/AF-SV-R). In summary, while no-arbitrage more or less affects the yield curve and its

dynamics, the extent to which it does is similar between constant and spanned volatility, which

is the same conclusion drawn from the main dataset.
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NS-CV NS-SV-F NS-SV-R

k1,11 −0.308 (0.122) −0.231 (0.131) −0.241 (0.121)

k1,22 −0.163 (0.100) −0.143 (0.110) −0.174 (0.114)

k1,33 −1.158 (0.344) −1.100 (0.348) −1.129 (0.345)

k0,1 0.019 (0.010) 0.014 (0.009) 0.014 (0.008)

σ1 × 102 1.064 (0.044) −0.208 (0.224)

σ2 × 102 1.126 (0.059) −0.158 (0.348)

σ3 × 102 2.610 (0.115) 1.924 (1.204) 2.607 (0.115)

ρ12 −0.673 (0.029) −0.718 (0.033) −0.713 (0.029)

ρ13 0.104 (0.084) 0.120 (0.082) 0.118 (0.078)

ρ23 −0.076 (0.066) −0.108 (0.064) −0.100 (0.064)

β11 0.188 (0.044) 0.139 (0.006)

β12 0.084 (0.057)

β13 −0.050 (0.043)

β21 0.184 (0.059) 0.149 (0.009)

β22 0.048 (0.061)

β23 0.010 (0.039)

β31 0.114 (0.162)

β32 0.091 (0.092)

β33 −0.041 (0.062)

LogL 2391 2413 2411

Table 1: Parameter estimates (standard errors) by the two-step approach without

no-arbitrage

In the first step, the vector of interest-rate factors Xt is obtained by fitting the NS yield curve to

the observed curve at each point in time. In the second step, the dynamics of Xt are estimated

using the (quasi-)maximum likelihood method with the standard error computed by the outer

product of the gradient of the log-likelihood function. The distribution of dXt is given by

dXt ∼ N [(K0 + K1Xt)dt, StRSt dt]: only the first element of K0 (k0,1) and the diagonal

elements of K1 (k1,ii) are estimated; R is a correlation matrix with the ij-th element ρij ; St is

a diagonal matrix with the i-th diagonal element specified as s(Xt) = σi + β′
iXt. NS-SV-F is a

fully parameterized model, and NS-CV and NS-SV-R are models with restrictions on βs. The

sample period is from 1985/1 to 2000/12 (192 observations).
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τ AF-CV AF-SV-F AF-SV-R

mon. Mean S.D. Min Max Mean S.D. Min Max

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 −0.1 0.0 0.0 0.0 −0.1 0.0

9 −0.1 −0.1 0.0 −0.2 0.0 −0.1 0.0 −0.2 0.0

12 −0.2 −0.2 0.1 −0.3 −0.1 −0.1 0.0 −0.3 −0.1

15 −0.3 −0.3 0.1 −0.5 −0.1 −0.2 0.1 −0.5 −0.1

18 −0.4 −0.4 0.1 −0.8 −0.2 −0.4 0.1 −0.7 −0.2

21 −0.6 −0.6 0.2 −1.2 −0.3 −0.6 0.1 −1.0 −0.3

24 −0.8 −0.8 0.2 −1.6 −0.4 −0.8 0.2 −1.3 −0.5

30 −1.3 −1.4 0.4 −2.7 −0.8 −1.3 0.3 −2.2 −0.8

36 −2.0 −2.1 0.6 −4.2 −1.1 −1.9 0.4 −3.3 −1.2

48 −3.6 −3.9 1.2 −8.0 −2.1 −3.5 0.7 −6.1 −2.2

60 −5.6 −6.2 1.9 −12.9 −3.1 −5.4 1.2 −9.6 −3.3

72 −7.9 −8.8 2.8 −18.6 −4.2 −7.6 1.8 −13.8 −4.5

84 −10.4 −11.7 3.8 −24.8 −5.4 −10.0 2.4 −18.3 −5.7

96 −13.3 −14.8 4.9 −31.1 −6.6 −12.6 3.1 −23.0 −6.9

108 −16.4 −18.1 5.8 −36.7 −7.9 −15.2 3.8 −27.7 −8.2

120 −19.9 −21.3 6.6 −40.9 −9.3 −18.0 4.5 −31.8 −9.6

Table 2: Difference between arbitrage-free and NS yields

Mean, standard deviation (S.D.), minimum (Min), and maximum (Max) of the difference in

the model-implied yields with and without no-arbitrage are presented in bps. The values of the

interest-rate factors Xt and parameters in Table 1 are fed into the no-arbitrage version of the

models to compute the no-arbitrage yield, which is then compared to the original NS yield. For

AF-CV, the difference is constant at a given maturity (i.e., A(τ) in (10)). The sample period is

from 1985/1 to 2000/12 (192 observations).
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e1 e2 e3
CV SV-F SV-R CV SV-F SV-R CV SV-F SV-R

Mean 13.0 13.0 13.1 −10.6 −10.8 −10.6 −25.0 −24.1 −25.0

S.D. 0.8 3.4 3.0 0.6 2.8 2.3 2.3 7.8 6.4

Min 9.3 4.2 4.5 −12.1 −17.0 −18.4 −32.1 −53.4 −42.0

Max 15.6 20.6 22.2 −8.9 −5.0 −5.4 −13.0 1.0 −2.8

AR(1) 0.32 0.89 0.94 0.15 0.98 0.98 0.46 0.68 0.85

Table 4: Difference in factors with and without no-arbitrage

Mean, standard deviation (S.D.), minimum (Min), maximum (Max), and first auto-correlation

(AR(1)) of the difference in the model-implied factors with and without no-arbitrage are pre-

sented: the numbers are in bps except for AR(1). The difference is computed for each factor i

as eji,t = xAFj
i,t − xNSj

i,t (i = 1, 2, 3; j = {CV, SV F, SV R}). CV stands for a model with constant

volatility, and SV-F and SV-R stand for models with spanned volatility with full and restricted

parameters, respectively. The sample period is from 1985/1 to 2000/12 (192 observations).
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AF-SV-F AF-SV-R

State Approx (%) MC (%) diff (bps) Approx (%) MC (%) diff (bps)

Min Level 4.339 4.339 0.0 4.344 4.344 0.0

Min Slope 7.756 7.734 2.2 7.767 7.745 2.2

Min Curvature 6.584 6.562 2.3 6.624 6.604 2.0

Med Level 7.137 7.134 0.3 7.127 7.123 0.5

Med Slope 8.742 8.737 0.4 8.706 8.699 0.8

Med Curvature 6.747 6.746 0.0 6.730 6.728 0.2

Max Level 11.633 11.617 1.6 11.562 11.529 3.3

Max Slope 5.356 5.356 0.0 5.351 5.350 0.0

Max Curvature 7.536 7.535 0.0 7.503 7.501 0.2

Table A1: Approximation error for the ten-year yield

The ten-year yields are computed using an approximation (Approx) method and the Monte

Carlo (MC) method, respectively, for AF-SV-F and AF-SV-R with the parameter values given

in Table 3. The difference between the two yields is expressed in bps. The yields are evaluated

at nine sets of factors Xt = (x1,t, x2,t, x3,t): for instance, “Min Level” represents a set in which

x1,t takes the minimum, “Med Slope” represents a set in which x2,t takes the median, and “Max

Curvature” represents a set in which x3,t takes the maximum. The data on Xt are obtained

by fitting the NS yield curve to the observed curve at each point in time over the period from

1985/1 to 2000/12.
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NS-CV NS-SV-F NS-SV-R

k1,11 −0.127 (0.065) −0.141 (0.057) −0.148 (0.053)

k1,22 −0.109 (0.074) −0.137 (0.079) −0.145 (0.074)

k1,33 −0.138 (0.118) −0.025 (0.154) −0.019 (0.152)

k0,1 0.004 (0.005) 0.006 (0.004) 0.006 (0.003)

σ1 × 102 1.133 (0.029) 0.099 (0.068)

σ2 × 102 1.341 (0.040) 0.226 (0.152)

σ3 × 102 3.013 (0.077) 0.064 (0.363)

ρ12 −0.700 (0.023) −0.729 (0.025) −0.735 (0.020)

ρ13 −0.176 (0.040) −0.081 (0.052) −0.083 (0.048)

ρ23 −0.093 (0.046) −0.149 (0.053) −0.147 (0.050)

β11 0.126 (0.013) 0.137 (0.007)

β12 0.014 (0.025)

β13 −0.081 (0.011) −0.085 (0.008)

β21 0.135 (0.024) 0.165 (0.007)

β22 0.009 (0.019)

β23 −0.097 (0.015) −0.115 (0.011)

β31 0.317 (0.056) 0.319 (0.019)

β32 0.051 (0.052)

β33 −0.305 (0.041) −0.288 (0.031)

LogL 4811.9 4897.1 4894.7

Table B1: Parameter estimates (standard errors) by the two-step approach without

no-arbitrage for GSW data

This table is analogous to Table 1 of the main text, obtained with the dataset constructed

by GSW (2007). The data are monthly, covering the period from 1985/1 to 2017/12 (396

observations).

25



τ AF-CV AF-SV-F AF-SV-R

year Mean Mean S.D. Min Max Mean S.D. Min Max

1 −0.1 −0.1 0.0 −0.3 0.0 −0.1 0.1 −0.3 0.0

2 −0.6 −0.5 0.2 −1.6 −0.1 −0.5 0.3 −1.6 −0.1

3 −1.5 −1.3 0.6 −3.6 −0.2 −1.3 0.6 −3.8 −0.2

4 −2.7 −2.3 1.1 −5.9 −0.4 −2.3 1.1 −6.2 −0.3

5 −4.3 −3.5 1.7 −8.5 −0.5 −3.6 1.8 −8.9 −0.5

6 −6.2 −4.9 2.4 −12.2 −0.8 −5.0 2.5 −12.6 −0.6

7 −8.4 −6.5 3.1 −16.3 −1.0 −6.6 3.3 −16.7 −0.8

8 −10.9 −8.2 4.0 −20.6 −1.3 −8.3 4.1 −21.1 −1.1

9 −13.7 −10.1 4.8 −24.9 −1.6 −10.1 5.0 −25.4 −1.3

10 −16.9 −12.0 5.6 −28.8 −2.0 −12.0 5.9 −29.2 −1.6

Table B2: Difference between arbitrage-free and NS yields for GSW data

This table is analogous to Table 2 of the main text, obtained with the dataset constructed

by GSW (2007). The data are monthly, covering the period from 1985/1 to 2017/12 (396

observations).
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NS-CV AF-CV NS-SV-R AF-SV-R

k1,11 −0.130 (0.065) −0.140 (0.059) −0.142 (0.059)

k1,22 −0.130 (0.085) −0.129 (0.089) −0.129 (0.090)

k1,33 −0.300 (0.165) −0.333 (0.238) −0.333 (0.283)

k0,1 0.003 (0.004) 0.005 (0.003) 0.004 (0.003)

c0 × 102 0.074 (0.001) 0.074 (0.001)

kQ0,1 × 102 0.227 (0.005) 0.218 (0.003)

σ1 × 102 1.110 (0.029) 1.187 (0.034) 0.407 (0.055) 0.523 (0.039)

σ2 × 102 1.350 (0.042) 1.399 (0.046) 0.512 (0.124) 0.666 (0.107)

σ3 × 102 2.914 (0.079) 2.911 (0.076) 0.649 (0.302) 1.313 (0.277)

ρ12 −0.716 (0.022) −0.739 (0.022) −0.734 (0.025) −0.748 (0.021)

ρ13 −0.142 (0.041) −0.176 (0.042) −0.067 (0.055) −0.103 (0.047)

ρ23 −0.071 (0.048) −0.033 (0.049) −0.097 (0.055) −0.099 (0.056)

β11 0.110 (0.011) 0.124 (0.005)

β12
β13 −0.082 (0.011) −0.021 (0.006)

β21 0.136 (0.025) 0.131 (0.024)

β22
β23 −0.102 (0.016) −0.053 (0.014)

β31 0.342 (0.060) 0.268 (0.055)

β32
β33 −0.310 (0.043) −0.471 (0.042)

ω × 104 2.98 (0.017) 2.95 (0.017) 2.97 (0.018) 2.78 (0.018)

LogL 23914 23937 23995 24153

Table B3: Parameter estimates (standard errors) by the one-step approach with

(AF-) and without (NS-) no-arbitrage for GSW data

This table is analogous to Table 3 of the main text, obtained with the dataset constructed by

GSW (2007). The results for the fully-parameterized model (NS/AF-SV-F) are not presented

as they are similar to those for NS/AF-SV-R presented above. The data are monthly, covering

the period from 1985/1 to 2017/12 (396 observations).
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x1 x2 x3
CV SV-R CV SV-R CV SV-R

Mean −28.8 −20.5 26.7 20.1 26.2 12.7

S.D. 0.1 10.9 0.1 5.8 0.5 29.1

Min −29.2 −41.2 26.4 3.1 23.8 −62.4

Max −28.3 9.6 26.9 30.5 28.4 69.6

AR(1) 0.05 0.98 0.26 0.97 0.07 0.99

Table B4: Difference in factors with and without no-arbitrage for GSW data

This table is analogous to Table 4 of the main text, obtained with the dataset constructed by

GSW (2007). The results for the fully-parameterized model (NS/AF-SV-F) are not presented

as they are similar to those for NS/AF-SV-R presented above. The data are monthly, covering

the period from 1985/1 to 2017/12 (396 observations).
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Figure 1: Time-series of difference in ten-year yields between spanned-volatility

and NS models

The difference in ten-year yields is computed as Y AFSV (Xt, 120) − Y NS(Xt, 120), where Xt

is extracted by the two-step approach and the parameter values are given in Table 1 with

λ = 0.0609. The sample period is from 1985/1 to 2000/12 (192 observations).
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Figure 2: Coefficients of Xt in no-arbitrage yield function

The yield for the spanned-volatility model is linearly projected on a constant and Xt for each τ

as Y AFSV (Xt, τ) = c0,τ + c′τXt+ut,τ , where ut,τ contains remaining nonlinear terms of Xt. The

OLS estimates of c0,τ and cτ are plotted against τ (month). For comparison, the corresponding

plots for the NS model (c0,τ = 0 and cτ = B(τ)) and the AF-CV model (c0,τ = A(τ) and

cτ = B(τ)) are presented. The parameter values used for computing the model-implied yields

are given in Table 1 with λ = 0.0609.

30



(a) e1; CV

0

5

10

15

20

25

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

(d) e2; CV

-20

-15

-10

-5

0

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

(g) e3; CV

-60

-50

-40

-30

-20

-10

0

10

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

(b) e1; SV-F

0

5

10

15

20

25

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

(e) e2; SV-F

-20

-15

-10

-5

0

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

(h) e3; SV-F

-60

-50

-40

-30

-20

-10

0

10

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

(c) e1; SV-R

0

5

10

15

20

25

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

(f) e2; SV-R

-20

-15

-10

-5

0

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

(i) e3; SV-R

-60

-50

-40

-30

-20

-10

0

10

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00

Figure 3: Time-series of difference in factors with and without no-arbitrage

The difference in each factor i is computed as eji,t = xAFj
i,t −xNSj

i,t (i = 1, 2, 3; j = {CV, SV F, SV R}).
The factors are estimated by the one-step approach and the parameter values are given in Table

3 with λ = 0.0609. The sample period is from 1985/1 to 2000/12 (192 observations).
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Figure B1: Time-series of difference in ten-year yields between spanned-volatility

and NS models for GSW data

Figure B1 is analogous to Figure 1 of the main text, obtained with the dataset constructed

by GSW (2007). The data are monthly, covering the period from 1985/1 to 2017/12 (396

observations).
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Figure B2: Coefficients of Xt in no-arbitrage yield function for GSW data

Figure B2 is analogous to Figure 2 of the main text, obtained with the dataset constructed by

GSW (2007). The maturity ranges from one to ten years. The data are monthly, covering the

period from 1985/1 to 2017/12 (396 observations).
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Figure B3: Time-series of difference in factors with and without no-arbitrage for

GSW data

Figure B3 is analogous to Figure 3 of the main text, obtained with the dataset constructed by

GSW. The data are monthly, covering the period from 1985/1 to 2017/12 (396 observations).
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